

International Journal on Recent Researches in Science, Engineering & Technology (IJRRSET)

A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF.

Research Paper

Available online at: <u>www.jrrset.com</u> UGC Approved Journal No: 45483

Received on: 14.11.2017 Published on: 30.11.2017 Pages : 40-50

ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105

Volume 5, Issue 11 November 2017. JIR IF : 2.54 DIIF IF : 1.46 SJIF IF : 1.329

A STUDY ON ROAD WIDENING PROJECT BASED ON TRAFFIC VOLUME AT KARUNAGAPPALLY, KERALA

Manjusha Manoj¹,Taniya Mery Boban² Dhanya K S³,Gayathri Anil⁴,Husna Hussain⁵,Lakshmi Pillai G⁶

¹Assistant Professor, Dept. of Civil Engineering, SVNCE ²Assistant Professor, Dept. of Civil Engineering, SVNCE ^{3,4,5,6} UG Scholar, Dept. of Civil Engineering, SVNCE

Abstract

This work presents the concept of road widening based on the prediction of traffic volume at Karunagappally between Lalaji junction and Pulliman junction. The project deals with traffic and accident reduction. From the traffic survey conducted by PWD in 2013 the traffic volume is increasing 5% every year leading in utilization of roads above capacity thereby reducing level of service. The continuously increasing traffic and congestion on the roadways have become one of the major concerns, increasing the stress levels in daily life. There occurs higher emission of pollutants due to incomplete combustion of fuels .By providing enough space on roads we can achieve fast movement of traffic thereby reducing pollution. For safe and efficient transportation flyover and road are practical solutions. As road widening is more economical than a flyover, to find a good solution we can propose road widening project between Lalaji junction and Pulliman junction. This work includes the study of existing traffic situation for the selected road stretch, observations and results of traffic volume survey of stretch, the study on need of road widening and justification, the design the two lane two way traffic.

Keywords: Level of service, passenger car unit PCU, Congestion, Traffic Volume, Spot Speed Study, Capacity

1. Introduction

National highways form the economic backbone of the country and have often facilitated urban development along the major highways. Although National highways (100,087 km) comprise 1.7% of India's total road network, it carries about 40% of road traffic and most of them have only two lanes. National Highway 66 which connects Panvel (south of Mumbai city) to Kanyakumari commonly referred to as NH 66 (Erstwhile NH-17), is a busy National Highway in India that runs roughly north–south along the western coast of India, parallel to the Western Ghats passes through the states of Maharashtra, Goa, Karnataka, Kerala and Tamil Nadu. NHAI upgrades highways to a minimum 4-lane, 60-meter-wide, grade-separated highway or a better standard across India. In Kerala, even though National

Highways are being upgraded to only 45-meter-wide, now Kerala State Government has requested NHAI to reduce the width of National highways in state to 30-meters, although neighboring Karnataka and Tamil Nadu are upgrading their National Highways as 60- meters or more wider highways, with futuristic provision for 6/8-lane highway. The reason cited by the State Government is the difficulty and disinterest in Land Acquisition, which is the responsibility of the State Government. Most of the National Highways are of good quality and the roads are wider and maintained well, but conditions of roads become worse during monsoon season, due to excessive rainfall in Kerala.

Karunagappally, one of the most important towns in Kollam district has experienced an increase both in population and in vehicular traffic. National highway No. 66 passes through the central part of the town and provides vital connectivity to Kollam and Thiruvananthapuram in the south and Alappuzha and Ernakulam in the Central parts of Kerala. From the records traffic survey conducted by PWD in 2013 the traffic volume is increasing 5% every year. This increase in rate of traffic resulted in hurdles like accidents, speed delay, environmental pollution due to incomplete combustion of fuels, damages in the pavement thus reducing the life of pavement etc. In this current scenario, by providing enough space in roads we can achieve fast movement of traffic thereby reducing pollution. To find a good solution we have proposed road widening project between Lalaji junction and Pulliman junction, thereby reducing traffic conjunction for about 2km. The objective of the project is to provide a safe transportation system. For this a flyover and road widening can be adopted. Road widening is preferred to a flyover as the former is more economical.

2. Study Area

The major road national highway No. 66 is maintained by PWD while the remaining roads are maintained by Karunagappally Municipality. Apart from NH 66, other important roads in the town are

- (i) Karunagappally -Sasthamkotta road
- (ii) Karunagappally Alappad road
- (iii) Karunagappally Amrithapuri road
- (iv) Karunagappally Alum Kadavu road

To compile base line data and necessary inputs for the study, various primary surveys were conducted in the study area. For the purpose of carrying out the surveys, major roads in the study area were divided into various homogeneous sections based on road width and traffic characteristics. Details of homogeneous sections identified on major roads in Karunagappally town are given in table.

NAME OF ROAD & SECTION
National Highway No. 66 (Old NH 47)
Lalaji Jn - KSRTC Jn
KSRTC Jn - Civil Station Jn
Civil Station Jn - High School Jn
High School Jn - Pulliman Jn

Table-1 Details of major roads in Karunagappally

20 PULLIMAN JUNCTION	
19	
18	
16 HIGH SCHOOL JUNC	TION
15	
18 11 MINI CIVIL STATION JUN	ICTION
5 KSRTC JUNCTION	RIGHT OF WAY
4 LALAJI JUNCTION	SEWERAGE LINE

Figure-1 AutoCAD drawing of the selected stretch of road section

2.1 Dimensions of the road stretch

Here in our project we have used handy GPS (Global Positioning System) to obtain the latitudes and longitudes of the points that we have selected, so as to obtain the dimensions of the road stretch. The latitudes and longitudes of 21 points in and between Lalaji junction and Pulliman junction were collected and the length and width of the selected road stretch was calculated.

Table-2 Width of by routes

JUNCTION NAME	BY ROUTES	WIDTH(m)
LALAJI JUNCTION	Old NH	5
	Panickerkadavu road	5
KSRTC JUNCTION	Market road	4
MINI CIVIL STATION	Kottarakkara	6
	By route	8
HIGH SCHOOL JUNCTION	Alumkadav	6
PULLIMAN JUNCTION	Railway station road	5
r olliwan jone non	Pulliman Nagar road	5

Table-3 Latitudes and longitude details obtained from the handy GPS

Points	P1	P2	P3	P4	P5	P6
1	9.0479,76.5362	9.0478,76.5361	0	0	9.0478,76.5362	9.0479,76.531
2	9.04783,76.5362	9.0487,76.5362	0	0	9.0487,76.5363	9.0487,76.5361
3	9.04908,76.53627	9.0490,76.53612	0	0	9.04903,76.53606	9.04903,76.53605
4	9.04950,76.53616	9.04950,76.53610	0	0	9.04941,76.53601	9.04944,76.53593
5	9.05135,76.53590	9.05138,76.53582	0	0	9.05128,76.53565	9.0513,76.53571
6	9.05248,76.53574	9.05245,76.53571	0	0	9.05250,76.53575	9.05247,76.53556
7	9.0531,76.5357	9.0531,76.5356	0	0	9.0531,76.553	9.0531,76.5355
8	9.05369,76.53553	9.05345,76.53552	9.5367,76.53547	9.05366,76.535	9.05366,76.5354	9.05363,76.53538
9	9.05515,76.53529	9.05527,76.53524	9.05531,76.53542	9.05511,76.535 -	9.05520,76.53560	9.05513,76.53557
10	9.05520,76.53559	9.05520,76.559	9.05524,76.53546	9.05526,76.535	9.05527,76.53539	9.05528,76.53534
11	9.05520,76.53556	9.05537,76.53553	9.05545,76.53545	9.05542,76.535	9.05544,76.53531	9.0555,76.5353
12	9.05559,76.53554	9.05625,76.5355	9.05568,76.5355	9.05568,76.535	9.0556,76.5353	9.05557,76.53529

13	9.05626,76.53538	9.05625,76.53538	9.05627,76.53541	9.05631,76.535	9.05631,76.53553	9.05631,76.53556
14	9.05656,76.53560	9.05655,76.53564	9.05658,76.53546	9.05662,76.535	9.05662,76.53537	9.05660,76.53525
15	9.05764,76.53544	9.05660,76.53525	9.05762,76.53549	9.5761,76.5355	9.05761,76.53568	9.05755,76.53572
16	9.05931,76.53581	9.05933,76.53554	0	0	9.05926,76.53563	9.05926,76.53563
17	9.06112,76.53536	9.06104,76.53549	0	0	9.06112,76.53525	9.06107,76.53512
18	9.06138,76.53489	9.06318,76.53493	0	0	9.06315,76.53479	9.06329,76.53477
19	9.06517,76.53471	9.06516,76.53471	0	0	9.06514,76.53460	9.06515,76.53450
20	9.06697,76.53453	9.06697,76.5345	0	0	9.06699,76.5344	9.06701,76.53430
21	9.06752,76.5345	9.06750,76.5345	0	0	9.06760,76.53434	9.06756,76.53427

Table-4 Width of the road and r	right of way at the 21 points
---------------------------------	-------------------------------

POINT NUMBER		I (m)		EXTRA WIDENING WIDTH(m)
POINTS(P)	PAVEMENT WIDTH	DIVIDER(IF ANY)	LEFT	RIGHT
P1	11	0	16	16
P2	11	0	3	22
P3	7	0	19	1
P4	14	0	7	9
P5	22	0	9	7
P6	7	0	5	11
P7	33	0	11	22
P8	25	2	27	7
P9	25	9	14	8
P10	23	7	3	8
P11	25	6	3	7
P12	22	13	5	4
P13	18	8	1	3
P14	28	4	37	13
P15	26	3	18	6
P16	23	0	3	4
P17	28	0	17	15
P18	5	0	4	21
P19	12	0	1	11
P20	11	0	3	11
P21	21	0	2	9

Table-5 Length of the road on either side

POINT NUMBER	LENGTH (m)		T NUMBER LENGTH (m) POINT NUMBER			LENG	LENGTH (m)		
POINTS(P)	LEFT	RIGHT	POINTS(P)	LEFT	RIGHT				
P1-P2	101	100	P11-P12	24	18				
P2-P3	35	40	P12-P13	76	83				
P3-P4	56	43	P13-P14	44	39				
P4-P5	211	212	P14-P15	43	113				
P5-P6	126	136	P15-P16	305	186				
P6-P7	73	83	P16-P17	190	211				
P7-P8	40	64	P17-P18	246	229				
P8-P9	205	172	P18-P19	222	224				
P9-P10	39	24	P19-P20	203	207				
P10-P11	20	21	P20-P21	59	68				

3. Data Collection and Analysis

3.1 Traffic volume surveying

A traffic count is a count of vehicular or pedestrian traffic, which is conducted along a particular road, path, or intersection. It provides the source data used to calculate the Annual Average Daily Traffic (AADT), which is the common indicator used to represent traffic volume.

JUNCTION NAME	TIME	CYCL E	MOTOR CYCLE	AUTO	CAR	BUS	HEAVY VEHICLE
LALAJI JUNCTION	(8:00-10:00)AM (12:30-2:30)PM (3:00-5:00)PM	25 5 8	1839 674 1966	275 179 296	1834 419 1152	253 104 288	129 73 120
KSRTC BUS JUNCTION	(8:00-10:00)AM (12:30-2:30)PM (3:00-5:00)PM	180 178 186	3989 4137 3347	784 828 648	1384 3887 1845	547 1648 760	845 1384 836
CIVIL STATION JUNCTION	(8:00-10:00)AM (12:30-2:30)PM (3:00-5:00)PM	129 142 24	2316 3785 3912	470 568 1080	1061 1546 2289	190 187 169	212 225 125
HIGH SCHOOL JUNCTION	(8:00-10:00)AM (12:30-2:30)PM (3:00-5:00)PM	53 44 36	2042 2152 1388	452 308 243	894 592 997	124 44 204	91 24 100
PULLIMAN JUNCTION	(8:00-10:00)AM (12:30-2:30)PM (3:00-5:00)PM	6 14 12	2088 2032 2810	168 254 231	874 943 1800	48 59 78	50 57 54

Table-6 Traffic count towards Kollam direction from each junction during peak and off peak hours

Table-7 Traffic count towards Alappuzha direction from each junction during peak and off peak hours

JUNCTION NAME	TIME	CYCLE	MOTOR CYCLE	AUTO	CAR	BUS	HEAVY VEHICLE
LALAJI	(8:00-10:00)AM	15	1386	317	926	168	175
JUNCTION	(12:30-2:30)PM	6	867	221	534	147	101
	(3:00-5:00)PM	12	1174	354	945	261	266
KSRTC BUS	(8:00-10:00)AM	138	3842	1532	1974	786	945
JUNCTION	(12:30-2:30)PM	84	2475	1786	3485	1548	1490
	(3:00-5:00)PM	37	3943	735	2835	384	370
CIVIL STATION	(8:00-10:00)AM	32	3112	1123	1468	236	157
JUNCTION	(12:30-2:30)PM	40	3924	1128	1672	259	143
	(3:00-5:00)PM	12	4248	1104	1537	210	179
HIGH SCHOOL	(8:00-10:00)AM	96	1859	311	1100	118	100
JUNCTION	(12:30-2:30)PM	109	1028	252	1596	176	184
	(3:00-5:00)PM	118	1584	408	855	198	150
PULLIMAN	(8:00-10:00)AM	3	2880	230	384	72	24
JUNCTION	(12:30-2:30)PM	11	1398	246	945	64	22
	(3:00-5:00)PM	6	1564	320	1178	84	27

In our project, a handy camera was placed at suitable positions, so that, we can cover the entire roads in the selected junction in our camera. Thereby, the traffic count was collected at two peak time and an off peak time of a day, at a junction. By this method we collected the traffic count of both NH 66 road and that through the by routes present in each junction, for a period of time. By this method we collected the traffic

count of both NH 66 road and that through the by routes present in each junction, for a period of time. The following tables given below show the traffic count of the five junctions naming Lalaji junction, KSRTC bus junction, Mini civil station junction, High school junction and Pulliman junction towards Kollam and Alappuzha side separately and also the counts of vehicles entering and leaving NH 66, to and from by routes.

Time	Name		Motor cycle	Auto	Car	Bus	Heavy vehicle
	At Lalaji junctio	on, Karu	inagappally				
(8:00 - 10:00)AM	To Old NH	4	112	51	32	11	6
	From Old NH	8	143	34	53	8	3
(12:30 – 2:30)PM	To Old NH	5	95	45	31	7	1
	From Old NH	7	107	28	47	9	6
(3:00 – 5:00)PM	To Old NH	6	104	43	26	11	3
	From Old NH	5	133	36	41	5	1
(8:00 - 10:00)AM	To Panickerkadavu road	9	329	136	245	7	4
	From Panickerkadavu road	6	372	185	164	6	7
(12:30 – 2:30)PM	To Panickerkadavu road	6	373	133	263	5	2
``````````````````````````````````````	From Panickerkadavu road	9	458	129	306	3	4
(3:00 – 5:00)PM	To Panickerkadavu road	5	481	108	414	14	9
	From Panickerkadavu road	8	427	156	144	5	7
At Mini Civil Stat	ion junction, Karunagappally						1
(0.00. 10.00) (1) (	To Kottarakkara	12	1876	239	574	10	3
(8:00–10:00)AM	From Kottarakkara	26	2132	321	425	8	4
(12.20. 2.20) D. (	To Kottarakkara	20	2412	853	745	20	10
(12:30 –2:30)PM	From Kottarakkara	8	1923	353	540	36	12
(2.00 5.00) D. (	To Kottarakkara	45	2736	1035	784	48	16
(3:00 – 5:00)PM	From Kottarakkara	26	2184	366	589	12	23
(0.00 10.00)	To kallummotil kadav	6	845	128	236	7	3
(8:00 – 10:00)AM	From kallummotil kadav	25	917	125	313	13	6
(12.20 2.20)	To kallummotil kadav	8	1140	320	540	8	10
(12:30 –2:30)PM	From kallummotil kadav	30	984	173	745	12	7
(2.00 5.00)	To kallummotil kadav	12	1345	264	312	13	12
(3:00 – 5:00)PM	From kallummotil kadav	35	1056	312	696	6	10

Table: 9. Traffic count to and from NH 66 and the by routes

Time	Name	Cycle	Motor Cycle	Auto	Car	Bus	Heavy Vehicle
	Pulliman ju	nction, I	Karunagappal	ly			
(8:00 – 10:00)AM	To RS road	3	274	34	101	6	3
	From RS road	2	120	12	24	3	2
(12:30 – 2:30)PM	To RS road	3	247	20	53	5	6
	From RS road	5	152	16	18	3	7
(3:00 – 5:00)PM	To RS road	7	228	18	84	8	10
	From RS road	3	254	27	89	2	5

(8:00 – 10:00)AM	To Pulliman nagar	3	35	9	12	Nil	2
	From Pulliman nagar	2	42	15	7	Nil	Nil
	To Pulliman nagar	Nil	40	8	10	1	3
(12:30 –2:30)PM	From Pulliman nagar	Nil	27	5	6	Nil	Nil
	To Pulliman nagar	15	72	7	35	2	Nil
(3:00 – 5:00)PM	From Pulliman nagar	4	38	4	18	1	Nil
	KSRTC junction, Karunagappo	ally					
(8:00 – 10:00)AM	To market road	25	1834	389	578	349	118
	From market road	78	1741	318	527	234	157
(12:30 – 2:30)PM	To market road	24	1383	389	578	352	184
	From market road	35	1741	318	483	584	216
(3:00 – 5:00)PM	To market road	30	1344	168	192	120	89
	From market road	67	1843	278	749	354	128
	High School junction, Karunago	appally					
(8:00 – 10:00)AM	To Alumkadav	82	745	176	240	50	9
	From Alumkadav	127	967	123	180	41	6
(12:30 – 2:30)PM	To Alumkadav	60	768	140	185	44	4
	From Alumkadav	120	616	120	128	12	8
(3:00 – 5:00)PM	To Alumkadav	137	854	154	115	32	7
	From Alumkadav	50	765	180	184	53	6

### 3.2 Speed and delay study

As part of the study, speed survey was carried out on the selected road stretches. For calculating the time from a video surveying, we adopted Start to Finish Method (Start timing when the front of the object reaches a "start line" and stop timing when the front of the object reaches the "finish line"). For this a starting and finishing point was marked in the screen of the device in which the video is being played. From this, the distance and the time the vehicle had taken to reach the finishing point from the starting point was obtained.

` Junction Name	Cycle (Km/Hr)	Motor Cycle (Km/Hr)	Auto (Km/Hr)	Car (Km/Hr)	Bus (Km/Hr)	Heavy Vehicles (Km/Hr)	Average (Km/Hr)
LALAJI JUNCTION	7.8	13.8	4.54	10	4.7	8.3	8.19
KSRTC JUNCTION	9	29.1	17.4	17.1	12	13.5	16.3
MINI CIVIL STATION	7	34.2	32.4	25.8	15	18.6	26.6
HIGH SCHOOL JUNCTION	12	24.6	21	22.2	18.12	12.4	19.6
PULLIMAN JUNCTION	7.2	24.6	21.8	26.4	15.6	16.2	20.92
TOTAL AVERAGE						18.322	

Table: 10. Speed of different vehicles at different junctions

After getting both distance and time the speed was calculated. By this method the speed of each category of vehicle was calculated and we obtained the average speed of vehicles in the selected road stretch i.e., between Lalaji junction and Pulliman junction.

#### 3.2 Passenger Car Equivalent (PCE)

Passenger Car Equivalent (PCE) or Passenger Car Unit (PCU) is a metric used in Transportation Engineering, to assess traffic-flow rate on a highway. A Passenger Car Equivalent is essentially the impact that a mode of transport has on traffic variables (such as headway, speed, density) compared to a single car. For example, typical values of PCE (or PCU) are:

Table: 11 Typical values of PCU					
Car	1				
Bicycle	0.2				
Motor cycle	0.5				
3-wheeler	0.8				
Bus ,Truck	3.5				

Table: 11 Typical valu	es of PCU	
------------------------	-----------	--

PCU values derived from the density method are based on underlying homogeneous traffic concepts such as strict lane discipline, car following and a vehicle fleet that does not vary greatly in width.

> Table: 12 Table showing PCU for 2 hours towards Alappuzha direction during peak and off peak time

JUNCTION NAME	TOWARDS ALAPPUZHA		TOWARDS	KOLLAM				
	PEAK PCU	OFF PEAK PCU	PEAK PCU	OFF PEAK PCU				
LALAJI JUNCTION	3371	2015	4289	1521				
MINI CIVIL STATION JUNCTION	5307	5953	5085	5363				
KSRTC BUS JUNCTION	9146	17162	9289	16343				
PULLIMAN JUNCTION	2476	2235	6470	4930				
HIGH SCHOOL JUNCTION	3140	3594	3000	2162				

Table 13 Capacity utilization of major road sections in Karunagappally town


SLNO:	NAME OF JUNCTION	2013 TOTAL VOLUME IN PCU	PRESENT TOTAL VOLUME IN PCU
1	LALAJI JUNCTION	45,631	82,152
2	KSRTC JUNCTION	47,481	1,51,956
3	CIVIL STATION JUNCTION	52,439	3,63,580
4	HIGH SCHOOL JUNCTION	49,493	1,12,784
5	PULLIMAN JUNCTION	45,857	83,272

By comparing the PCU value of the year 2013 and the present PCU value (2017) we could find that there is a drastic increase in the vehicular population. This increased the traffic congestion at Karunagappally.

#### 3.3 Results and Discussions

As part of the study, speed survey was carried out on the selected road stretches. There are two methods for calculating the time from a video surveying. The speed of each category of vehicle was calculated and we obtained the average speed of vehicles in the selected road stretch i.e., between Lalaji junction and Pulliman junction approximately 25 km/hr.

Passenger Car Equivalent (PCE) or Passenger Car Unit (PCU) is a metric used in Transportation Engineering, to assess traffic-flow rate on a highway. Highway capacity is measured in PCU/hour daily a common method used in the US is the density method. However, the PCU values derived from the density method are based on underlying homogeneous traffic concepts such as strict lane discipline, car following and a vehicle fleet that does not vary greatly in width. On the other hand, highways in India carry heterogeneous traffic, where road space is shared among many traffic modes with different physical dimensions. By comparing the PCU value of the year 2013 and the

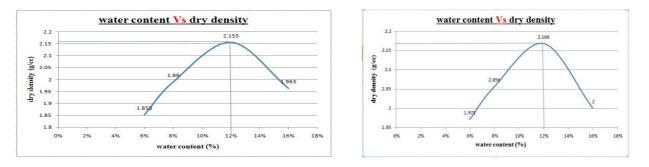


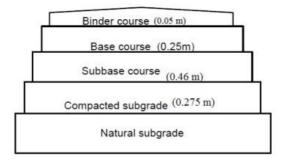
present PCU value (2017) we could find that there is a drastic increase in the vehicular population. This increased the traffic congestion at Karunagappally.

SI No	Junction Name	2013 Volume in PCU	2017 Volume in PCU
1	Lalaji	45,631	82,152
2	KSRTC JUNCTION	47,481	1,51,956
3	Civil Station	52,439	3,63,580
4	High School JUNCTION	49,493	1,12,784
5	Puliman	45,857	83,272

Table -14 Capacity utilization of major road sections in Karunagappally town

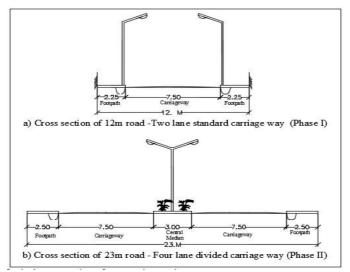
The quality of the soil on site plays a key role in construction projects. Soil inspection or say geotechnical inspection was conducted to done to explore the sub surface and surface characteristics of soil. Compaction of soil is required for the construction of earth dams, canal embankments, highways, runways, and much other structure. California Bearing Ratio test is conducted in laboratory. This test provides the load penetration resistance of soil and is used for the evaluation of sub grade strength of roads and pavements. Various other tests like proctor compaction, specific gravity are conducted to determine the elastic properties of the soil.Specific Gravity of 2.5 and 2.8 were obtained at Lalaji junction and Puliman junction respectively.





Fig-4 Load Penetration Graph at Lalaji Jn



Therefore from the graph the CBR value for 2.5mm penetration and 5mm penetration is 1.185% and 1.92%, respectively.


# 2.2 Design Concept

Using the elastic properties the various pavement layers were designed using IRC method.



**Fig-6 Designed Layers of Pavement** 

Extra width is provided at the curved section of the road, as there is a tendency to move away from the edge of the carriageway while driving on a curve and also additional width is required for a vehicle taking a horizontal curve. So provide an extra widening of 0.9 m at horizontal curve at Lalaji junction. cambers of slope 2 to 3% are provided. On straight sections of roads, shoulders are provided with higher cross fall than that of the carriageway by 0.5%. Composite camber of 2%-3% is provided.



**Fig-6** Comparison of Existing and Designed Pavement

2Km road stretch was designed from Lalaji Junction to Puliman Junction having a width of 23m.

### 4. Conclusions

Based on detailed studies, data pertaining to traffic and transportation system for Karunagappally town has been compiled. The base line data contains traffic volume and utilization on major roads, calculation of passenger car unit at each junction. Traffic on main junctions has been carried out for various horizon periods considering the growth potentials of the study area. The NH road stretch, where KSRTC station is located, faces acute traffic congestion because of movements of buses to and from the KSRTC station, parking of large of vehicles on the road side and pedestrian criss-cross movements. Civil station junction and High school junctions are the other problematic locations in the NH road corridor. The Sasthamkotta road also faces traffic congestion due to presence of market and the inadequate road width. On comparing with previous year data the increase in traffic volume can be analyzed and need of increase in road space shows its relevance. To provide enough road space a flyover or road widening can be adopted. As a road widening project is more cost effective than a flyover, it is more suitable for solving traffic problems at Karunagappally. Based on traffic projection, a long term Transportation Development Plan has been formulated integrating road, rail, and water transport system.

### References

- [1] Mr.Udit Batra, Mr.Mandar.U.Sarode "Traffic survey & analysis" International Journal of Application or Innovation in Engineering & Management, ISSN :2319-4847, 2013
- [2] Prasant Chauhan, Sunil. A.Bakher "Real time traffic analysis & routing system" International Journal of Engineering Trends& Technology Vol 4,Issue 4,April 2013
- [3] Minati Kumari Padhi "Cost effective analysis of road widening" International Journal of Mechanical & Civil Engineering , ISSN: 2278-1684, Vol 11,Issue 4, July-August 2014
- [4] Mr. Shekhar, K. Rahane, Mr. U.R Saharkar "Traffic congestion –causes & solutions" Journal of information, Knowledge & search in Civil Engineering, ISSN: 0975-6744, Vol 3, Issue 1, Nov 13-Oct 14
- [5] Mr.Patric Troy, Mr. MaxNeutze Journal of Transportation Economics & Policy-Urban road Planning in Theory & Practice ,Vol 126, May 1969
- [6] Mr. Richard T.T Forman, Mr. LaurenE Alexander "Roads & their major ecological effects" National Transportation Development Policy Committee, Vol 29, 1998
- [7] Majid Sarvi, Md Aftabuzzaman, Graham Currie, "Evaluating The Congestion Relief Impacts Of Public Transport In Monetary Terms", Journal of Public Transportation, Vol.13, Issue1, 2010.
- [8] Manuj Darbari Sanjay Medhavi and Abhay Kumar Srivastava, "Development of effective Urban Road Traffic Management using work flow techniques for upcoming metro cities like Lucknow (India)", International Journal of Hybrid Information Technology, Vol.1,Issue 3, July 2008.
- [9] Pothula Sanyasi Naidu, Gundu Navya, Chukka Deepika, Mahesh Yamala, "Capacity of Road with vehicle Characteristics and Road Geometrics Interface Modeling", SSRG International Journal of Civil Engineering, Vol 2, Issue 10, October 2015