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ABSTRACT 

Image super-resolution is the process to generate output (high-resolution images) as from input 
(low-resolution images).In this paper we presents a  novel approaches for the super-resolution of 
image reconstruction from their low-frequency k-space samples,  recovering the super resolution 
version of a given low-resolution image. In that first stage, estimate a resolution-independent mask 
whose zeros represent the edges of the image. Our work extending the theory of sampling signals of 
finite rate of innovation (FRI) to two-dimensional curves. We enable its application to IMAGE by 
proposing extensions of the signal models allowed by FRI theory, more robust to noise and efficient 
means to determine the edge mask.  The second stage of the scheme, we recover the super-resolved 
image using the discredited edge mask as an image prior. Evaluate present scheme on simulated 
single-coil image obtained from analytical phantoms, and compare against total variation 
reconstructions. The proposed algorithm had shown improved performance in both noiseless and 
noisy settings.   

Index Terms—Finite Rate of Innovation, 2Dimensional curves, Super-resolution, K-samples. 

I. Introduction 

Now a day’s Super-resolution (SR) image reconstructions are accelerated, very active area of 

research. Image super-resolution is the process to generate high-resolution images as from low-

resolution images input. The availability of high-resolution Image can greatly facilitate early 

diagnosis by enabling the detection and characterization of subtle and clinically significant 

lesions [1]. However, the recovery of very high-resolution Image is often challenging, mainly 

due to the slow nature of IMAGE acquisition, subject motion, and the rapid decrease in SNR 



with resolution. For example, it is common practice to acquire low-resolution data in 

spectroscopic imaging in consideration of accretion higher k-space samples comes with a heavy 

signal to noise ratio forfeiture, imaging metabolites at very low concentrations. At the same time, 

the use of low spatial resolution results in the leakage of strong signals such as water and fat to 

other spatial regions, thus distorting the metabolite signals.  

Several super-resolution and off-the-grid methods were introduced recently to estimate 

parametric signals with finite number of unknowns from their low-frequency samples. For 

example, the locations and amplitudes of a finite number of Dirac delta functions probably 

approximated in destination, its low frequency Fourier samples using continuous total variation 

minimization [2], or by estimating an annihilation filter and then determining its roots [3]. 

Unfortunately, the representation using finite number of basic functions is not efficient for the 

representation of piecewise polynomial images. For example, the gradient of a piecewise 

constant image is nonzero on a curve, which cannot be represented as a finite linear combination 

of Dirac delta functions. Recently, Pan et al. introduced an complex analytic signal model for 

continuous domain two-dimensional signals, whose derivatives are supported on a curve [4].  

Specifically, they assume the curve is the zero level-set of a function band limited to a 

rectangular region in the Fourier domain. The authors showed that the Fourier transform of the 

curve model will annihilate the Fourier coefficients of the signal derivatives. This property 

enables them to extend the FRI model [3] to multidimensional signals. The main focus of this 

paper is to extend the multidimensional FRI model [4] to enable super-resolution IMAGE. While 

the multidimensional FRI model [4] is very powerful, it has some limitations that restrict its 

direct applicability to IMAGE. First of all, the complex analytic signal model introduced in [4] is 

too restrictive and is not applicable to most images. We generalize the signal model to piecewise 

polynomial and harmonic functions, which are better suited to represent practical signals. The 

annihilation conditions central to the scheme are not exactly satisfied in the presence of model 

mismatch and noise. A Cadzow iterative procedure was used in [4] to de noise the data before 

estimating the curve coefficients, approach is competition stringent and feels necessity for some 

knowledge of the underlying model order. 

 We introduce a novel algorithm based on averaging vectors in the null space of the equations 

that is robust to noise and model mismatch, and is computationally efficient. Present algorithm 

fallow two steps: in that, first step estimate a super-resolved spatial mask whose zeros 



correspond to the edges in the image. Second, we discredited the mask at the desired resolution 

and use the discrete spatial weights in a weighted total variation. We compare the efficacy of this 

two step strategy against classical discrete total variation regularized recovery of numerical 

phantoms from their exact Fourier samples. Fig – 1 shows an example of our method. 

                          

 Fig – 1 Super resolution of butterfly image reconstruction with scaling factor 3, Right: image of 

proposed method, Left: low resolution image. 

 

II. SUPER-RESOLUTION OF EDGE IMAGES 

In the present work certain circumstances it is potential to super resolve the edges of an image 

from its low-frequency Fourier samples. In general, unless we assume certain constraints in 

geometry, we cannot get a hope to recover the edge set. As in [4] we assume the edge sets to be 

the zero set of a band limited periodic trigonometric polynomial µ(r) on [0, 1]2, 

 

Where Λ is any finite index set, and µb[k] are any complex coefficients. We command 

comparable sets C trigonometric curves. As noted in [4], the set of trigonometric curves have a 

rich topology, and for large enough bandwidth, they can approximate arbitrary curves to any 

desired accuracy. As a first approximation, we consider images that are piecewise constant, 

meaning the image can be expressed as finite linear combinations of functions of the form 

 

Where Ω is a simple region in [0, 1]2 with piecewise smooth boundary ∂Ω given as {µ = 0} for 

some µ as in (1). The Fourier transform of 1Ω is given as 



 

 

 

Where the last two equations follow by Green’s theorem. Under the Fourier domain relations. 

 

The partial derivatives of 1Ω can be interpreted (in a distributional sense) as a continuous stream 

of Dirac’s in the spatial domain supported on ∂Ω. Thus, formally, we should have µ ∂x1Ω = µ 

∂y1Ω = 0, and so we say µ acts as an annihilating mask for the partial derivatives of 1Ω.  

This can be established rigorously in the Fourier domain to give the following:  

Proposal 2.1. Let 1Ω be as above with boundary ∂Ω given as a trigonometric curve C: {µ(r) = 

0}. Then the Fourier transforms of the partial derivatives of 1Ω are annihilated by convolution 

with µb[k], that is 

 

 

The above proposition shows that in principle it is possible to recover the edge set C : {µ = 0} of 

1Ω by solving the linear system of equations (4) for µb.  

This is provided we have a sufficient number of low-pass samples to make the system (4) 

determined. We investigate methods for solving for the filter coefficients µb in the following 

section. We now consider the case where the image is assumed to be piecewise linear, meaning it 

can be written as a linear combination of functions of the form 

 

where L is any affine function L(r) = a T r + b, for a ∈ C 2 , b ∈ C. Intuitively, any second 

derivative of g should vanish except on ∂Ω : {µ(r) = 0}, where it will act like the derivative of a 

Dirac. Accordingly, we can show ν = µ 2 is an annihilating mask for any second derivative of g, 

since both ν and ∇ν = 2µ∇µ vanish on ∂Ω. The following proposition expresses this fact in the 

Fourier domain. 



 

 

 

III. FINITE RATE OF INNOVATION 

FRI can be defined as a signal with a parametric representation, with a finite ρ given below. 

Another useful concept is that of a local rate of innovation over a window of size τ, defined as:  

 

Note that ρτ (t) clearly tends to ρ as τ tends to infinity. Given an FRI signal with a rate of 

innovation ρ, we expect to be able to recover x (t) from ρ samples (or parameters) per unit time. 

The rate of innovation turns out to have another interesting interpretation in the presence of 

noise: it is a lower bound on the ratio between the average mean-squared error (MSE) achievable 

by any unbiased estimator of x (t) and the noise variance, regardless of the sampling method 

[12]. In image processing, a lot of signals are not band limited and thus cannot be represented 

using decomposition on band limited filters. Typical illustrations of this are streams of Dirac or 

piecewise polynomials. Thus, to encode such signals using linear techniques like wavelet 

decompositions results in many detail coefficients and are therefore not optimal. To circumvent 

this problem, some authors [1] remarked that streams of Dirac and piecewise polynomials are 

associated with a finite degree of freedom. For instance, the former are defined by the location of 

the Dirac’s and their amplitude, and are said to be with finite rate of innovation (FRI). The key 

issue to determine the FRI is to use an annihilator filter (also called locator) filter [1]. Then a 

filter is applied onto the signal depending on the computed FRI bearing in mind that signal 

reconstruction has to be still possible from the filtered signal. However, the approach proposed in 

[1], is limited in that it is very sensitive to noise or other perturbation, and also because most 

signals are usually not characterized by a finite degree of freedom. For that reason, many 

developments have been carried out to estimate FRI in a noisy context [2-3] which can be 

viewed as attempts to stabilize the seminal algorithm. 

The various types of moments can be obtained by a linear combination of the geometric 

moments which therefore constitute the basic elements of moment-based analysis. With an 

image acquisition system, the observed view f(x, y) is not available so the true moments mp,q of 



the continuous function f(x , y)cannot be directly computed. Instead, they are approximated from 

the acquired image g using the discredited version of  

 

When the resolution of g gets low, the discrete moments do not provide a good approximation of 

the continuous moments and this discrepancy can degrade the performance of any moment-based 

techniques dramatically. An alternative solution might be to deconvolve each image first and 

then evaluate the discrete moments on the deconvolved samples. This approach may improve the 

end result but does not solve the problem when the resolution is low. In [10], new sampling 

results were proposed for 1-Dand 2-D FRI signals. In particular, it is shown that it is possible to 

compute the exact moments of an FRI signal from its sampled version, provided that the 

sampling kernel satisfies the String–Fix conditions. In this paper, we propose to use these results 

on real images in order to extract the true continuous moments of a real object f from its samples. 

The continuous moments are obtained by linear combination of the samples with the coefficients

 as follows: 

 

Where (a) and (b) follow, respectively, from (2) and (1). Thus, the proposed combination of the 

samples with allows the extraction of the exact moments from a sampled version of the 

observed continuous scene. Once the continuous geometric moments are obtained, other types of 

continuous moments (e.g., central or complex). 



In this paper we emphasize on super-resolution using only the LR input image without any 

external dataset or exemplar image. Our contribution is two-fold. Firstly, we propose a frame 

work to learn the reverse mapping from a LR image to the corresponding HR image pixel wise, 

relying on local structures defined by each pixel’s neighborhood. Pixels in the HR image are first 

estimated by their nearest neighbors (repressors) in an initial up sampled image via Gaussian 

process regression (GPR). The result is then de blurred by learning from LR/HR patches 

obtained from its down sampled version and the LR input.  

3.1 GPR for Super-resolution 

In our regression-based framework, patches from the HR image are predicted pixel wise by 

corresponding patches from the LR image. GPR provides a way for soft-clustering of the pixels 

based on the local structures they are embedded. Given the intuitive in-perpetration of hyper 

parameters of the covariance function. In our case, we can optimize their values through margin 

a like hood maximization. 

3.2 Single Image SR 

Figure shows a chain graph representation of GPR for image SR in our setting, where 

each3×3patch from the input image forms a predictor-target training pair. Thus in Equation the 

observed is the intensity of the pixel at the center of a 3×3 patch and x is an eight-dimensional 

vector of its surrounding neighbors. In order to adapt to different regions of the image, it is 

partitioned into fixed-sized and overlapped patches (e.g., 30×30), and the algorithm is run-on 

each of them separately. The patch-based results are then combined to give the whole HR image. 

We predict the HR image using a two-stage coarse-to-fine approach, which is consistent with the 

image formation process. As shown the imaging process can be modeled as a degradation 

process of the continuous spatial domain depending on the camera’s Point Spread Function 

(PSF). After discretization, this process can be further expressed as 

 

Where L and H denote the LR and HR image respectively, H denotes the blurred HR image, f is 

the blur kernel and ↓d denotes the down sampling operator with a scaling factored. 

3.3 Image up-sampling 

Equipped with the resolution enhancement method of the previous section, we now approach 

image up sampling by modeling lines (along different directions) of images as 1-D piecewise 



smooth functions and extend the method of 1-Dcase to 2-D images. For clarity and simplicity, 

we denote the image at original low-resolution with y0 and its up sampled version by factor 2K 

with y K. The low-resolution image y0 of size N_N is the low-pass version of a K-level 2D 

wavelet transform applied to the high-resolution image y K of size 2KN _2KN with all the 

high-pass coefficients discarded. 

 

3.4 Algorithm for pseudo codes of the SMSR-based image super resolution 

INPUT: A low resolution image y and a total scaling factor d. 

I. Initialization 

 Set the initial parameters and c ; 

 Through exploiting the multi - scale similarity redundancy , the input LR image y is 

enlarged to obtain XSM by the multi - step magnification scheme ; 

 Set the initial value of the target HR image that is d times the size of y by down sampling the 

enlarged result XSM ; 

II. Outer loop (Dictionary learning & Sparse coding) for each iterations t=1 to T1 do 

 Update the dictionaries by means of k- means clustering and PCA ; 

 ,, 21

}{ k



 Compute the transform function f with the reference gradient histogram hT , and update the 

HR image  by the gradient regularization ; 

 Inner loop : for each iteration j=1 to T2 do 

1. Update  by the fidelity constraint ; 

2. Compute the sparse coding coefficients of each patch , 

Where  is the dictionary assigned to the patch ; 

3. Compute the regularization parameter  and  the non local means of ; 

4. Update the coding coefficients again by the iterative shrinkage operator 

using ; 

5. Reconstruct the estimate  using ;  

6. Update the HR image XH= . 

OUTPUT: A high resolution image XH. 

 

 

IV. RESULTS 

 

We applying our proposed methods on both generic and face images to get super resolution 

results.  In our experiment, the input low resolution images by a scaling factor 3, in the proposed 

method of FRI algorithm formulates the original image as an input is reconstructed by super 

)(tX


)2/1( tX


)2/1()2/1( 

 t

XRi

T

k

t
i

 

k
)2/1( 


t

XRX ii




i

)2/1( t
i

)1( t
i

)1( tX


)1( tX




resolution sparse technique involves. Result analysis of proposed scheme with various standard 

input images i.e., reference images are shown as follows. 

          

           (a)                                   (b)                                 (c) 

Fig – 2: Results of our fri method shown in table 1 ,girl image magnify by a factor of 3, 

from right to left our method, bicubic intrpolation, input. 

       

           (a)                                   (b)                                 (c) 

Fig – 3: Results of our fri method shown in table 1,bird image magnify by a factor of 3, 

from right to left our method, bicubic intrpolation, input. 



           

          (a)                                              (b)                                     (c) 

Fig – 4: Results of our fri method shown in table 1,bird image magnify by a factor of 3, from 

right to left our method, bicubic intrpolation, input. 

Table – 1 . Results of  our method 

Images                           FRI method 

PSNR(db) RSME Processing time(sec) 

Girl face 99.00 0.00 180 

Butterfly 23.3265 0.8571 130 

Bird 23.7556 0.7547 140 

 
TABLE .2.   OBJECTIVE COMPARISON OF THE IMPLEMENTED SR 

METHODS [19]. 
 

Implemented model 

 

PSNR(db) 

 

RMSE 

 

Processing time(sec) 

 

Standard interpolation      23.57 

 

0.7475 

 

0.002 

 

SR nearest neighbor      27.51 0.8832 9.057 



   

SR shift and add 27.09 0.8701 0.081 

SR bilinear 28.00 0.8844 0.333 
SR Delaunay 28.61 0.903 0.104 

SR Delaunay bicubic 29.02 0.9116 0.112 
SR iterative back 

projection 
26.90 0.8625 0.373 

SR near optimal 26.30 0.835 0.208 
SR MAP 28.56 0.9017 0.527 

OUR METHOD 99.00 0.00 180 
 

 

V. CONCLUSIONS 

 

We have presented in this paper two novel approaches for feature extraction that take maximum 

advantage of the prior knowledge of the acquisition filter and that are based on the basic 

principles behind the sampling of FRI signals. The first proposed method allows the exact 

retrieval of the continuous moments of an object from its sampled image. The second one bring 

back the current location of local image features. These are then used to retrieve the exact 

location of corner points which are utilized for the exact registration of low-resolution images 

like in the context of image super-resolution. Experimental results on artificially sampled images 

and natural images show the efficiency of the proposed feature extraction methods and the 

validity of the proposed acquisition model. 
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