

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 154

TRAVEL GUIDE FOR BACKPACK TRAVELLERS

Pavitra M Gadhar1, Shweta M Nirmanik2, Carmel Prabha3

1,2,3Department of Computer Science and Engineering R. T. E. Society’s Rural Engineering

College Hulkoti, Gadag, Karnataka, India-582205

Abstract--Travel agencies always provide some predefined itineraries which are not suitable for

backpack traveler, as they are not meant for particular customer. Existing solutions provide

automatic planning services in which the Points of Interest (POIs) are organized into customized

itinerary. As the search space of all itineraries is too costly to explore entirely, assumptions are

made that the trip is limited to only important POIs. In order to overcome the above limitation, in

this project, we aim to design a planning service, where multiday itineraries are generated for the

users. In this service, all POIs are given by users based on reviews. A two-stage planning scheme

is proposed in which precomputing of single-day itineraries via MapReduce jobs are done in

preprocessing stage and in second stage some approximation search algorithm is used for

combining single day itineraries and finally entire itinerary for specified number of days is

generated.

Keywords : - Map reduce, itinerary planning, Points of Interest (POIs).

1. INTRODUCTION

Traveling market is divided into two parts. For casual customers, they will pick a package from

local travel agents. The package, in fact, represents a pre-generated itinerary. The agency will

help the customer book the hotels, arrange the transportations, and preorder the tickets of

museums/parks. It prevents the customers from constructing their personalized itineraries, which

is very time consuming and inefficient. Although the travel agencies provide efficient and

convenient services, for experienced travelers, the itineraries provided by the travel agents lack

customization and cannot satisfy individual requirements. Some interested POIs are missing in

the itineraries and the packages are too expensive for a backpack traveler.

Therefore, to attract more customers, travel agency should allow the users to customize their

itineraries and still enjoy the same services as the predefined itineraries. However, it is

impossible to list all possible itineraries for users. A practical solution is to provide an automatic

itinerary planning service. The user lists a set of interested POIs and specifies the time and

money budget. The itinerary planning service returns top-K trip plans satisfying the

requirements. In the ideal case, the user selects one of the returned itineraries as his plan and

notifies the agent. Planning an itinerary consumes more time. For a popular city or tourist spot, it

involves investigating the many number of Points of Interest (POIs), selection of the POIs that

one is interested, to work out the order in which POIs are required to be visited, and to safeguard

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 155

that the time it takes to visit each of them, and to make movement from one POI to other POI,

satisfying the user’s time budget [1].

Therefore, to attract more customers, travel agency should allow the users to customize their

itineraries and still enjoy the same services as the predefined itineraries. However, it is

impossible to list all possible itineraries for users. A practical solution is to provide an automatic

itinerary planning service. The user lists a set of interested POIs and specifies the time and

money budget. The itinerary planning service returns top-K trip plans satisfying the

requirements. In the ideal case, the user selects one of the returned itineraries as his plan and

notifies the agent.

2. METHODOLOGY

First, current planning algorithms only consider a single day’s trip, while in real cases, most

users will schedule an n-day itinerary (e.g., the one shown in Fig. 1). Generating an n-day

itinerary is more complex than generating a single day one. It is not equal to constructing n

single-day itineraries and combining them together, as POI can only appear once in the itinerary.

It is tricky to group POIs into different days. One possible solution is to exploit the relocations,

for example, nearby POIs are put in the same day’s itinerary. Alternatively, we can also rank

POIs by their importance and use a priority queue to schedule the trip.

 Second, the travel agents tend to favor the popular POIs. Even for a city with a large

number of POIs, the travel agents always provide the same set of trip plans, composed with top

POIs. However, those popular POIs may not be attractive for the users, who have visited the city

for several times or have limited time budget. It is impossible for a user to get his personal trip

plan. The travel agent’s service cannot cover the whole POI set, leading to few choices for the

users. In our algorithm, we adopt a different approach by giving high priorities to the selected

POIs and generating a customized trip plan on the fly.

 Third, suppose we have N available POIs and there are m POIs in each single day’s

itinerary averagely. We will end up with candidate itineraries. It is costly to evaluate the benefit

of every itinerary and select the optimal one.

Therefore, in some heuristic approaches are adopted to simplify the computation. However, the

heuristic approaches are based on some assumptions (e.g., popular POIs are selected with a

higher probability). They only provide limited number of itineraries and are not optimized for the

backpack traveler, who plans to have a unique journey with his own customized itinerary.

 Last but not the least, handling new emerging POIs was tricky in previous approaches.

The model needs to be rebuilt to evaluate the benefit of including the new POIs into the itinerary.

For systems based on the user’s feedback, we need to collect the comments for the new POIs

from the users, which is very time-consuming.

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 156

 To address the above problems, a novel itinerary planning approach is proposed. The

design philosophy of our approach is to generate itineraries that narrow the gap between the

agents and travelers.

Preprocessing:

In the preprocessing, POIs are organized into an undirected graph. The distance of two POIs is

evaluated by Google Map’s APIs.1 Given a request, the system provides interfaces for the user

to select preferred POIs explicitly, while the rest POIs are assumed to be the optional POIs.

Different ranking functions are applied to different types of POIs. The automatic itinerary

planning service needs to return an itinerary with the highest ranking. Searching the optimal

itinerary can be transformed into the team orienteering problem (TOP), which is an NP-complete

problem without polynomial approximations. Therefore, a two stage scheme is applied.

In the preprocessing stage, we iterate all candidate single-day itineraries using a parallel

processing framework, MapReduce. The results are maintained in the distributed file system

(DFS) and an inverted index is built for efficient itinerary retrieval. To construct a multiday

itinerary, we need to selectively combine the single itineraries. The preprocessing stage, in fact,

transforms the TOP into a set-packing problem, which has well-known approximated algorithms.

Approximation Algorithms:

In the online stage, we design approximate algorithms to generate the optimal itineraries. The

approximate algorithm adopts the initialization-adjustment model and a theoretic bound is given

for the quality of the approximate result. To evaluate the proposed approach, we use the real data

from Yahoo Travel2. The experiments show that our approach can efficiently return high-quality

customized itineraries. The remainder of this methodology is organized as follows: we formalize

the problem and give an overview of our approach. Then, present the preprocessing stage and

online stage of our approach, respectively.

3. SYSTEM DESIGN

SPATIAL

NETWORK

MAP

SINGLE DAY

ITINERARY

GENERATION

APPROXIMATE

ALGORITHM

SHORTEST PATH

BETWEEN

INITIALIZATION

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 157

Fig3.1 Architecture of a trip planning system

Fig. 3.1 shows the proposed architecture for trip-planning system. A two stage scheme is

proposed.

1) Pre-Processing

2) Algorithm approximation

Pre-processing stage:

In this stage candidate single-day itineraries are iterated using a MapReduce. The results of this

are stored in the distributed file system.

Algorithm Approximation stage:

In this stage algorithms are designed which approximates algorithm that generate the optimal

itineraries. These approximation algorithms take on initialization-adjustment model so that new

solutions are searched.

3.2 POI Graph

3.2.1 Definition of POI Graph:

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 158

In the POI graph G= (V, E), for each of the POI a vertex is created and each pair of vertices are

connected through undirected edge in E. In the graph G, every vertex and edge has the following

properties:

1. “∀𝑣𝑖 ∈ V, w (𝑣𝑖) denotes the weight (importance) of the POI and t (𝑣𝑖), is the average

time that tourists will spend on the POI.

2. ∀ (𝑒𝑥 = 𝑣𝑖 → 𝑣𝑗) ∈ E, t (𝑒𝑥) is the cost of the edge, computed as the average

travelling time from𝑣𝑖 𝑡𝑜 𝑣𝑗 .”

In this planning system, the user chooses an interested set of POIs and requests the

system to generate k-day itinerary. As shown in figure 4.1, the first thing to be carried out is the

POI graph construction. Once the user provides the POIs, the graph is constructed which is

shown in below figure.3.2 and the Google Map API is utilized to calculate the distance between

two different POIs in the graph.

Fig3.2 POI graph

In the figure 3.2 shown above each node is considered as POI and bears two properties: weight

and travel time. All nodes are connected through weighted edges. There are two types of edges.

First is one which shows that in the map two nodes are directly connected (other POI is not

existing in their shortest path e.g., path from 0 to 1). Second is which contains no direct path but

has many shortest paths in the map. The cost of the edges are assumed to be symmetric in the

definition of POI graph i.e. the travelling time from 𝑣𝑖 to 𝑣𝑗 are equal to the time from 𝑣𝑗 to 𝑣𝑖 ,

but in this approach the case of non symmetric is directly applied e.g., traffics varies for 𝑣𝑖 to 𝑣𝑗

and 𝑣𝑗 to 𝑣𝑖 .

Let w (𝑣𝑖) represent the weight or importance of POI𝑣𝑖 . The initial weight of 𝑣𝑖 is

considered from the user‟s reviews i.e. user can define score 0 to 5 for each POIs. User

selects set of POIs, and the weight of the POIs chosen are increased purposely by𝛼(𝑤(𝑣𝑖) +

𝑖), where 𝛼 is set to arbitrary integer. A single-day itinerary is as shown below

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 159

L=𝑣0 → ⋯ → 𝑣𝑛 → ℎ𝑗 -------- (1)

ℎ𝑗 is hotel POI. The time is calculated as

 t (L) =∑ t(vi)𝑛
𝑖=0 +∑ t(vi → vi + 1) + t(vn → hj)𝑛−1

𝑖=0 -----------(2)

Pre-Processing

Once POI graph is constructed next stage is pre-processing which involves two stages.

1. Single-day Itinerary Generation

2. Building Index

In first stage a set of MapReduce jobs are given way to construct all feasible or viable

single-day itineraries. By making use of parallel processing mechanism such MapReduce all

itineraries can be generated efficiently. In the second stage an itinerary index is built and

these indexes are just reorganization of all single-day itineraries, which assists in itinerary

search to be systematic or well structured.

Single-day Itinerary

The basic plan or scheme is iteration of all single-day itineraries, which is done using a

MapReduce jobs. In each itinerary initially consists of only one POI. MapReduce job makes

an effort to add one extra POI to the itinerary and checks whether the two POIs can be

visited in the same day and the same process continues. If no single-day itineraries can be

generated then the process halts. This grand design is based on conclusion that user cannot

visit many number of POIs in single-day. The algorithms for MapReduce used here are

mapper and reducer. The mapper tries to attach new POI to the existing itineraries. A test

is conducted for each new path to test that a path can be completed within a single day, if

cannot be completed then the new path is dropped out or discarded. And if the old path does

not produce any new path, then the old path is considered as a output. In mapper, in order to

calculate the cost and weight of latest itinerary POI graph is loaded. POI graph is in the form

of table and table’s plot is as follows

(S_POI, E_POI, S_weight, E_weight, S_cost, E_cost, cost) -------- (3)

Where E_POI and S_POI represent the two POIs connected by a particular edge, cost is the

travelling cost from E_POI to S_POI. Once all itineraries are generation is completed, a

clean process is called to eliminate the duplicates.

Itinerary Index

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 160

The index is built using MapReduce jobs. In the algorithm mapper, a key-value pairs are

generated for each POI that involved and the algorithm reducer on the other hand

accumulates all itineraries of a particular POI and classifies or categorizes POI on the basis

of their weights before index file is created. In real case size of the index file may differ as

some of the POI may have a exceptionally huge index file, owing to its short visit time and

popularity.

Approximation Algorithm

Once the itinerary indexes are built, the user request can be dealt with by choosing k best

itineraries from the indexes. There are three processes

1 Initialization

2 Adjustment

3 Hotel Selection

Initialization

Whenever the user requests, the weight of POIs are adjusted in that set in order to highlight the

user’s selection. The weight of POI is increased by 𝛼(𝑤(𝑣𝑖) + 1), where 𝛼 is integer which

greater than 0 and 𝑤(𝑣𝑖) is original or actual weight of POI 𝑣𝑖.

Adjustment

In order to improve the weights of the itineraries that are obtained, there is adaptation of the

adjustment phase. In this phase there is hunting of new solution and this process is iterated

until no betterment can be procured.

Hotel Selection

Hotel selection process can be taken into account as the special type of POIs. This step

appears as the last stage in the itinerary planning system. Depending on user’s choice there

are two stages of processing: multiple hotels, single hotel.

Multiple Hotels

If the user is not interested to stay in the same hotel, then the pre-processing algorithm

can be extended to manage the hotel selection. In the MapReduce jobs, a test is conducted

to test each hotel and tried to attach it to the terminating part of 𝐿𝑖. 𝐿𝑖|ℎ𝑗 is reviewed as a

single-day itinerary, if

1. “The complete travelling time of 𝐿𝑖|ℎ𝑗 , is less than H. H is the average

travelling time per day.

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 161

2. For any other nonhotel POI �̅� which is not considered by 𝐿𝑖, 𝐿𝑖|�̅�|ℎ𝑗 cannot

be completed within H time.”

4. IMPLIMENTATION

The figure 3.1 shows the proposed architecture for trip-planning system. A two stage scheme

is proposed.

1. Pre-Processing

2. Algorithm approximation

POI Graph

In this planning system, the user chooses interested set of POIs and requests the system to

generate k-day itinerary. The first thing to be carried out is the POI graph construction.

Once the user provides the POIs the graph is constructed and the graph is stored in the form

of table, the table scheme is as shown below

(S_POI, E_POI, S_weight, E_weight, S_cost, E_cost, cost),

Where E_POI and S_POI represent the two POIs connected by a particular edge, cost is the

travelling cost from E_POI to S_POI. The Google Map API is utilized to calculate the

distance between two different POIs in the graph. The POI graph is read by function as

shown below:

readPOIGraph (String fname)

Pre-Processing

Once POI graph is constructed next stage is pre-processing where the input to this stage is

POI table and the single-day itineraries are generated using MapReduce method. The

algorithm used for MapReduce is mapper and reduce. The mapper and reduce are invoked

by functions as shown below respectively:

map (Object key, Text value, Context context)

reduce (Key key, Iterable values, Context context)

In mapper in order to calculate the cost and weight of latest itinerary POI graph

which is in the form of table is loaded and the computation begins for generation of single-

day itineraries. Once all itinerary generations are completed, a clean process is called to

eliminate the duplicate POIs and the function is as shown below:

Path removeDuplicate (Path x, Vector<Path> rev)

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 162

Initialization

The initialization process is invoked by

Initialization (POIList L, Day k).

In this step grouping is done and before the grouping process, the POIs are sorted first

depending on their weights by

sortByWeight(L)

In this grouping process, it holds the subsets of POIs that can be visited within a day.

if i < k and L.size() > 0 then

poi= L.nextPOI();

Set group=new Set()

group.add (poi)

 lastpoi= poi

The POI with the shortest distance is greedily selected and is added into the group and

this is invoked by:

newpoi =getNearest (lastpoi, L)

time= getTravelTime (group, newpoi)

if time ≤ one day then

group.add(newpoi)

L.remove(newpoi)

Lastpoi= newpoi

Adjustment

The adjustment process is invoked by:

Adjustment (Set S, double P, int step)

Hotel Selection

In some cases user may prefer to stay in different hotel or in same hotel. The hotel

selection process is invoked by:

HotelSelection (Set hotels, Set itinerarySet).

Volume 5, Issue 7 - January 2017 - Pages 154-164

Pavitra M Gadhar et.al Page 163

The main idea is at the end of each itinerary dropout some POI and tries to attach the hotel

POI, as shown below

if getTravelTime (𝐿𝑗 , ℎ𝑖) > H then

𝐿𝑗 .removelast ()

The above mentioned is a pseudo code to continuously remove the last POI.

5. CONCLUSION

 In this project, we present an automatically itinerary generation service for the backpack

travelers. The service creates a customized multiday itinerary based on the user’s preference.

This problem is a famous NP-complete problem, team orienting problem, which has no

polynomial time approximate algorithm. To search for the optimal solution, a two-stage scheme

is adopted. In the preprocessing stage, we iterate and index the candidate single-day itineraries

using the MapReduce framework. The parallel processing engine allows us to scan the whole

dataset and index as many itineraries as possible. After the preprocessing stage, the TOP is

transformed into the weighted set-packing problem, which has efficient approximate algorithms.

In the next stage, we simulate the approximate algorithm for the set-packing problem. The

algorithm follows the initialization-adjustment model and can generate a result, which is at most

worse than the optimal result. Experiments on real data set from travelling website show the

proposed approach can efficiently generate high-quality customized itineraries.

REFERENCES

[1] Gang chen, Sai Wu, Jingbo Zhou, and Anthony K.H Tung “Atomatic Itinerary

Planning for Travelling Services” IEEE Knoweledge And Data Engineeringvol.26 Mar

2014.

[2] Tom white., "Hadoop: The Definitive guide".

[3] S Singh., N Singh, "Big Data Analytics", International Conference on

Communication, Information & Computing Technology (ICCICT), pp.208-214, 2012

[4] Apache Hadoop, 2013, http://hadoop.apache.org

[5] S.B. Roy, G. Das, S. Amer-Yahia, and C. Yu, “Interactive Itinerary Planning,” Proc.

IEEE 27th Int‟l Conf. Data Eng. (ICDE), pp. 15-26,2011.

[6] C. Archetti, A. Hertz, and M.G. Speranza, “Metaheuristics for the Team Orienteering

Problem,” J. Heuristics, vol. 13, pp. 49-76, Feb. 2007.

http://hadoop.apache.org/

