
 
 
 
 
 

145 
 

Volume 6, Issue2 Pages 145-150 

 

DESIGN & IMPLEMENTATION OF CONVOLUTION NEURAL 

NETWORKS 
 

1M A Sameer, 2M. Iliyas, 3Azeem Hussain, 4Aaqib Ihraz 
2 Professor, 1,3,4 Assist. Professor 

1,2,3,4 Shadan College of Engineering and Technology, Hyderabad. 
1sameerk87@gmail.com 

 

Abstract Full end-to-end text recognition in natural images is a challenging problem that has received much atten- 

tion recently. Traditional systems in this area have re- lied on elaborate models incorporating carefully hand- 

engineered features or large amounts of prior knowl- edge. In this paper, we take another method and combine the 

representative power of large, multilayer neural networks together with recent developments in unsupervised feature 

learning, which allows us to use a common framework to train highly-accurate text detec- tor and character recognizer 

modules. Then, using only simple off-the-shelf methods, we integrate these two modules into a full end-to-end, 

lexicon-driven, scene text recognition system that achieves state-of-the-art performance on standard benchmarks, and 

popular streets  

 

1 INTRODUCTION 

Extracting textual information from natural images is a challenging problem with many practical applica- tions. 

Unlike character recognition for scanned docu- ments, recognizing text in unconstrained images is com- plicated by a 

wide range of variations in backgrounds, textures, fonts, and lighting conditions. As a result, many text detection and 

recognition systems rely on cleverly hand-engineered features [5, 4, 14] to repre- sent the underlying data. 

Sophisticated models such as conditional random fields [11, 19] or pictorial structures 

[18] are also often required to combine the raw detec- tion/recognition outputs into a complete system. 

In this paper, we attack the problem from a differ- ent angle. For low-level data representation, we use an 

unsupervised feature learning algorithm that can auto- matically extract features from the given data. Such algorithms 

have enjoyed numerous successes in many 

 
Figure 1. CNN used for text detection. 

 

 

related fields such as visual recognition [3] and action recognition [7]. In the case of text recognition, the system in [2] 

achieves competitive results in both text detection and character recognition using a simple and scalable feature 

learning architecture incorporating very little hand-engineering and prior knowledge. 

We integrate these learned features into a large, discriminatively-trained convolutional neural network (CNN). CNNs 

have enjoyed many successes in simi- lar problems such as handwriting recognition [8], visual object recognition [1], 

and character recognition [16]. By leveraging the representational power of these net- works, we are able to train 

highly accurate text detection and character recognition modules. Using these mod- ules, we can build an end-to-end 

system with only sim- ple post-processing techniques like non-maximal sup- pression (NMS)[13] and beam search 

[15]. Despite its simplicity, our system achieves state-of-the-art perfor- mance on standard test sets. 

2. LEARNING ARCHITECTURE 

In this section, we describe our text detector and character recognizer modules, which are the essential building blocks 

of our full end-to-end system.  Given   a 32-by-32 pixel window, the detector decides whether the window contains a 
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centered character. Similarly, the recognizer decides which of 62 characters (26 upper- case, 26 lowercase letters, and 

10 digits) is in the win- dow. As described at length in Section 3, we slide the 

 
Figure 2. Examples from our training set. 

Left: from ICDAR. Right: synthetic data 

detector across a full scene image to identify candidate lines of text, on which we perform word-level segmen- tation 

and recognition to obtain the end-to-end results. 

For both detection and recognition, we use a multi- layer, convolutional neural network (CNN) similar to [8, 16].  Our 

networks have two convolutional layers 

for detection with n1 = 96 and n2 = 256 is shown in with n1 and n2 filters respectively. The network we use (n1 = 115 

and n2 = 720) is used for recognition. Figure 1,  while a larger,  but structurally identical one 

We train the first layer of the network with an un- 

supervised learning algorithm similar to [2, 3]. In par- ticular, given a set of 32-by-32 grayscale training im- ages1 as 

illustrated in Figure 2, we randomly extract 

ZCA whitened [6] to form input vectors x(i) ∈ R64, i ∈ m  8-by-8 patches,  which are contrast normalized and 

{1, ..., m}.   We  then use  the variant of K-means   de- 

scribed in [2] to learn a set of low-level filters D  ∈ 

R64×n1 .  For a single normalized and whitened 8-by-8 

patch x, we compute its first layer responses z  by  per- 

a scalar activation function: z = max{0, |DTx| − α}, where    α    =   0.5   is    a    hyperparameter. forming inner 

product with the filter bank followed by 

Given a 32-by-32 input image, we compute z for ev- 

ery 8-by-8 sub-window to obtain a 25-by-25-by-n1 first layer response map. As is common in CNNs, we aver- age 

pool over the first layer response map to bring its dimensions to 5-by-5-by-n1. We stack another convo- lution and 

average pooling layer on top of the first layer to obtain a 2-by-2-by-n   second layer response map. These outputs are 

fully connected to the classification layer. We discriminatively train the network by back- 

propagating the L2-SVM classification error,2 but we 

fix the filters in the first convolution layer (learned from K-means). Given the size of the networks, fine-tuning is 

performed using multiple GPUs. 

 
Figure 3. Detector responses in a line. 

 

3. END-TO-END PIPELINE INTEGRATION 

Our full end-to-end system combines a  lexicon  with our detection/recognition modules using post- processing 

techniques including NMS and beam search. Here we assume that we are given a lexicon (a list of tens to hundreds of 

candidate words) for a particular im- age. As argued in [18], this is often a valid assumption as we can use prior 

knowledge to constrain the search to just certain words in many applications. The pipeline mainly involves the 

following two stages: 
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(i) We run sliding window detection over high res- olution input images to obtain a set of 

candidate lines of text. Using these detector responses, we also estimate locations for the spaces in the line. 

(ii) We integrate the character responses with the can- didate spacings using beam search [15] to 

obtain full end-to-end results. 

First, given an input image, we identify horizontal lines of text using multiscale, sliding window detec- tion. At each 

scale s, we evaluate the detector response 

Rs[x, y] at each point (x, y) in the scaled image.  As 

acters at the right scale produce positive Rs[x, y]. We apply NMS [13] to Rs[x, r] in each individual row r to shown in 

Figure 3, windows centered on single char- 

estimate the character locations on a horizontal line. In 

particular, we define the NMS response non-zero R˜s[x, r],  we form a line-level bounding box where δ is some width 

parameter. For a row r with Lr with the same height as the sliding window at scale 

s.  The left and right boundaries of Lr are defined as min(x) and max(x), s.t.  R˜s[x, r] >  0.  This yields a 

1Our dataset consists of examples from the ICDAR 2003 train- ing images [10], the English subset of the Chars74k 

dataset [4], and synthetically generated examples. 

2In the form of a squared hinge loss: max{0, 1 − θTx}2 . 

set of possibly overlapping line-level bounding boxes. We score each box by averaging the nonzero values  of 

R˜s[x, r].  We then apply standard NMS to remove all 

L’s that overlaps by more than 50% with another box 

bounding boxes L˜.  Since gaps between words produce of a higher score, and obtain the final set of line-level sharply 

negative responses,  we also estimate  possible 

space locations within each Lr by applying the same NMS technique as above to the negative responses. 

After identifying the horizontal lines of text, we jointly segment the lines of text into words and recog- nize each word 

in the line. Given a line-level bounding box L and its candidate space locations, we evaluate a number of possible 

word-level bounding boxes using a Viterbi-style algorithm and find the best segmentation scheme using a beam search 

technique similar to [9]. 

character recognizer across it and obtain a 62 × N score To evaluate a word-level bounding box B, we slide the matrix 

M , where N  is the number of sliding windows 

M (i, j) suggests a higher chance that the character with within the bounding box. Intuitively, a more positive index i is 

centered on the location of the jth window. 

Similar to the detection phase,  we perform NMS  over 

to be present. The other columns of M are set to −∞. M to select the columns where a character is most likely We  then 

find the lexicon word w∗ that best matches a 

score matrix M as follows: given a lexicon word w, compute the alignment score 
Table 1. Cropped word recognition accu- racies on ICDAR 2003 and SVT 

Benchmark I-WD-50 I-WD SVT-WD 

Our approach 90% 84% 70% 

Wang, et al. [18] 76% 62% 57% 

Mishra, et al. [11] 82% - 73% 

 

4. EXPERIMENTAL RESULTS 

In this section we present a detailed evaluation of our text recognition pipeline. We measure cropped charac- ter and 

word recognition accuracies, as well as end-to- end text recognition performance of our system on the ICDAR 2003 

[10] and the Street View Text (SVT) [18] datasets. Apart from that, we also perform additional analysis to evaluate the 

importance of model size on dif- ferent stages of the pipeline. 

First we evaluate our character recognizer module on the ICDAR 2003 dataset. Our 62-way character classifier 

achieves state-of-the-art accuracy of 83.9% on cropped characters from the ICDAR 2003 test set. The best known 

previous result on the same benchmark is 

81.7% reported by [2] 

Our word recognition sub-system is evaluated on im- ages of perfectly cropped words from the ICDAR 2003 and SVT 

datasets.  We  use the exact same test setup  as [18]. More concretely, we measure word-level accuracy with a lexicon 

containing all the words from the where lw is the alignment vector3 between the characters in w and the columns of M 

. Sw can be com- ICDAR test set (called I-WD), and with lexicons consisting of the ground truth words for that image 

plus puted efficiently using a Viterbi-style alignment algorithm similar to [17].4 We compute Sw for all lexicon 
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50 random “distractor” words added from the test set the highest scoring word w∗. We take SB = Sw to be words and 

label the word-level bounding-box B with the recognition score of B. 

Having defined the recognition score for a single bounding box, we can now systematically evaluate pos- sible word-

level segmentations using beam search [15], a variant of breadth first search that explores the top   N possible partial 

segmentations according to some heuristic score. In our case, the heuristic score of a can- didate segmentation is the 

sum of the SB’s over all the resulting bounding boxes in a line of text L. In order  to deal with possible false positives 

from the text detec- tion stage, we threshold individual segments based on their recognition scores. In that way, 

segments with low recognition scores are pruned out as being “non-text.” 

3For example, lw = 6 means the 4th character in w aligns with the 6th column of M , or the 6th sliding window in a 

line of text. 

4In practice, we also augment Sw with additional terms that en- courage geometric consistency. For example, we 

penalize character spacings that are either too narrow or vary a lot within a single word. (called I-WD-50). For the 

SVT dataset, we used the provided lexicons to evaluate the accuracy (called SVT- WD). Table 1 compares our results 

with [18] and the very recent work of [11]. We evaluate our final end-to-end system on both the ICDAR 2003 and 

SVT datasets, where we locate and recognize words in full scene images given a lexicon. For the SVT dataset, we use 

the provided lexicons; for the ICDAR 2003 dataset, we used lexicons of 5, 20 and 50 distractor words provided by the 

authors of [18], as well as the “FULL” lexicon consisting of all words in the test set. We call these benchmarks I-5, I-

20, I-50 and I-FULL respectively. Like [18], we only consider alphanumeric words with at least 3 characters. Figure  5 

shows some sample outputs of our system. We fol- low the standard evaluation criterion described in [10] to compute 

the precision and recall. Figure 4 shows pre- cision and recall plots for the different benchmarks on the ICDAR 2003 

dataset. 

As a standard way of summarizing results, we also 

 
Figure 5. Example output bounding boxes of our end-to-end system on I-FULL and SVT bench- marks. Green: correct 

detections. Red: false positives. Blue: misses. 

Table 2. F-scores from end-to-end evalua- tion on ICDAR 2003 and SVT datasets. 
Benchmark I-5 I-20 I-50 I-FULL SVT 

Our approach 

Wang, et al. [18] 

.76 

.72 

.74 

.70 

.72 

.68 

.67 

.51 

.46 

.38 

 

 
Figure 4. End-to-end PR curves on ICDAR 2003 dataset using lexicons with 5, 20, and 50 distractor words. 

report the highest F-scores over the PR curves and com- pare with [18] in Table 2. Our system achieves higher F-

scores in every case. Moreover, the margin of im- provement is much higher on the harder benchmarks (0.16 for I-

FULL and 0.08 for SVT), suggesting that our system is robust in more general settings. 

In addition to settings with a known lexicon, we also extend our system to the more general setting by using a large 

lexicon L of common words. Since it is infea- sible to search over all words in this case, we limit our 

search to a small subset P  ∈ L of “visually  plausible” 
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words.  We  first perform NMS on the score matrix  M 

across positions and character classes, and then thresh- old it with different values to obtain a set of raw strings. The 

raw strings are fed into Hunspell5  to yield a set  of suggested words as our smaller lexicon P , Using this simple 

setup, we achieve scores of 0.54/0.30/0.38 (precision/recall/F-score) on the ICDAR dataset.   This 5Hunspell is an 

open source spell checking software available at http://hunspell.sourceforge.net/. We augment its default lexicon with 

a corpus of English proper names to better handle text in scenes. 

 
Figure 6. Accuracies of the detection and recognition modules on cropped patches 

is comparable to the best known result 0.42/0.39/0.40 obtained with a general lexicon by [14]. 

In order to analyze the impact of model size on dif- ferent stages of the pipeline, we also train detection and 

tional filters. The detection modules have n2 = 64 and recognition modules with fewer second layer convolu- 128 

compared to 256 in our full model. We call the de- 

tection modules D64, D128 and D256 respectively. Sim- ilarly, we call the recognition modules C180, C360 and 

C720,  which corresponds to n2  = 180,  360 and 720. 

The smaller models have about 1/4 and 1/2 number of 

learnable parameters compared to the full models. 

To evaluate the performance of the detection mod- 
Table 3. Classification and end-to-end re- sults of different recognition modules 

Recognition module C180 C360 C720 

Classification accuracy 82.2% 83.4% 83.9% 

End-to-end F-score .6330 .6333 .6723 

ules, we construct a 2-way (character vs. non-character) classification dataset by cropping patches from the IC- DAR 

test images. The recognition modules are eval- uated on cropped characters only. As shown in Fig-  ure 6, the 62-way 

classification accuracy increases as model size gets larger, while the 2-way classification re- sults remain unchanged. 

This suggests that larger model sizes yield better recognition modules, but not necessar- ily better detection modules. 

Finally, we evaluate the the 3 different recognition modules on the I-FULL benchmark, with D256 as the detector for 

all 3 cases. The end-to-end F-scores are listed against the respective classification accuracies in 

Table 3. The results suggests that higher character clas- sification accuracy does give rise to better end-to-end results. 

This trend is consistent with the findings of [12] on house number recognition in natural images. 

5. CONCLUSION 

In this paper, we have considered a novel approach for end-to-end text recognition. By leveraging large, multi-layer 

CNNs, we train powerful and robust text detection and recognition modules. Because of this increase in 

representational power, we are able to use simple non-maximal suppression and beam search tech- niques to construct 

a complete system. This represents a departure from previous systems which have gener- ally relied on intricate 

graphical models or elaborately hand-engineered systems.  As evidence of the power  of this approach, we have 

demonstrated state-of-the- art results in character recognition as well as lexicon- driven cropped word recognition and 

end-to-end recog- nition. Even more, we can easily extend our model to the general-purpose setting by leveraging 

conventional open-source spell checkers and in doing so, achieve per- formance comparable to state-of-the-art. 
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