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ABSTRACT 

In this section, the mobility analysis discussed in the previous section is reformulated into a state-

space form that will be useful for subsequent developments. We introduce four different kinds of 

state-space representation that are of interest for understanding the behavior of wheeled robots, and for 

control design purpose.  The posture kinematic model, which is the simplest state-space model able to 

give a global description of the robot, from the users viewpoint. This paper also expresses the 

structural properties of the above models of wheeled robots from a control design viewpoint. Since, in 

most situations, the user is only interested in the posture of the robot, and not in the internal variables 

(such as the wheel orientation angles), the most interesting models are the posture models (kinematic 

or dynamic). This is why the discussion on structural properties will be mainly based on the posture 

models. 

POSTURE KINEMATIC MODELS 

We have shown that, whatever the type of robot, the velocity vector ˙ξ(t) is restricted to belong to a 

distribution Δc defined as 

ξ ∈ Δc = span{col[R_(θ)Σ(βs)]} 

where the columns of the matrix Σ(βs) constitute a basis of N[C∗1 (βs)]. This is equivalent to the 

following statement: for all t, there exists a vector η such that 

ξ = RT(θ)Σ(βs)η 

The dimension of the distribution Δc, and hence of the vector η(t), is equal to the degree of mobility 

δm of the robot. Obviously, in the case where the robot has no steering wheels, the matrix Σ is 

constant, and the expression reduces to 

ξ = R_(θ)Ση . 

In the opposite case (δs ≥ 1), the matrix Σ explicitly depends on the orientation angles βs, and the 

expression can be augmented as follows: 

ξ = R_(θ)Σ(βs)η 

β˙s = ς 
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The representation can be viewed as a state-space representation of the model, reflecting the mobility 

restriction induced by the constraints; it is termed the posture kinematic model. The state vector is 

constituted by the three posture coordinates ˙ξ(t) and, possibly, by δs orientation coordinates βs. The 

vectors η and ξ, of dimension δm and δs, respectively, are homogeneous to velocities and can be 

interpreted as control inputs entering the model linearly. Nevertheless, this interpretation should be 

treated with some care, since the true physical inputs are the torques provided by the embarked 

actuators.  

This posture kinematic model allows us to discuss further the maneuverability of wheeled robots. The 

degree of mobility δm is equal to the number of degrees of freedom that can be directly manipulated 

from the inputs η(t), without reorientation of the steering wheels. Intuitively, it corresponds to how 

many degrees of freedom the robot could have instantaneously from its current position, without 

steering any of its wheels. This number δm is not equal to the overall number of degrees of freedom of 

the robot that can be manipulated from the inputs η(t) and ς(t), which is equal to the sum δM = δm+δs 

andwhich we could call degree of maneuverability. It includes the δs degrees of freedom that are 

accessible from the inputs ς(t). However, the action of ς(t) on the posture coordinates ˙ξ(t) is indirect, 

since it is achieved only through the coordinates βs, which are related to the inputs ς(t) by an integral 

action, reflecting the fact that the modification of the orientation of a steering wheel cannot be 

achieved instantaneously.  

The maneuverability of a wheeled robot depends not only on δM, but also on the way these δM 

degrees of freedom are partitioned into δm and δs. Therefore, two indices are needed to characterize 

the maneuverability. Obviously the ideal situation is that of omnimobile robots where δM = δm = 3. In 

order to avoid useless notational complications, we will assume from now on that the degree of 

steerability is equal to the number of steering wheels, i. e., Ns = δs.  

This is a restriction from a robot design viewpoint. However, for the mathematical analysis of the 

behavior of mobile robots, there is no loss of generality in this assumption, although it considerably 

simplifies the technical derivation. Indeed, for robots with an excess of steering wheels, it is always 

possible to reduce the condition to a minimal subset of exactly δs independent constraints that 

correspond to the δs wheels that have been selected as the master steering wheels and to ignore the 

other slave wheels in the analysis. 

Irreducibility, Controllability, and Nonholonomy 

1. We first address the question of the reducibility of the kinematic posture state-space model. A 

state model is reducible if there exists a change of coordinates such that some of the new 

coordinates are identically zero along the motion system. For a nonlinear dynamical system 

without drift like reducibility is related to the dimension of the involutive closure .Δ of the 

following distribution Δ, expressed in local coordinates as 

Δ(z) = span [colB(z)] . 

A well-known consequence of the Frobenius theorem is that the system is reducible only if dim(. 

Δ) ≤ dim(Δ)−1.  

The following property can be checked for the posture kinematic models of wheeled robots. For 

the posture kinematic model ˙z = B(z)u,  

– the input matrix B(z) has full rank, i. e., rank [B(z)] = δm+δs∀z, 

– the involutive distribution .Δ(z) has constant maximal dimension, i. e., dim [Δ(z)]= 3+δs. 

As a consequence, the posture kinematic model of a wheeled robot is irreducible. This is a 

coordinate free property.  

This property has another consequence related to the controllability of the posture kinematic 

model. For a nonlinear dynamical model without drift of the form, the strong accessibility algebra 
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coincides with the involutive distribution .Δ(z), which has constant maximal dimension. It follows 

that the strong accessibility rank condition is satisfied and, therefore, the system is strongly 

accessible from any configuration. For such a driftless system this implies controllability. 

Practically, this means that a mobile robot can always be driven from any initial posture ξ0 to any 

final one ξf , in a finite time, by manipulating the velocity control inputs u = (ηTςT). Finally, the 

difference between the dimensions of the two distributions Δ(z) and .Δ(z), i. e.,  

Dim[Δ(s)] −dim [Δ(s)] = (3+δs)−(δm+δs) 

= 3−δm  

is related to the nonholonomy of the posture kinematic model. If this difference is nonzero (i. e., if 

δm ≤ 2) the posture kinematic model is said to be nonholonomic. If δm = 3, which is the case only 

for omnimobile robots, the kinematic posture model is holonomic. 

 

2. The configuration kinematic model is obtained from the posture model by adding the evolution of 

the internal variables βc(t) and ϕ(t), and takes the same form q˙ = S(q)u. In order to analyze 

reducibility and controllability issues we now have to consider the following two distributions: 

Δ1(q) = span [col(S(q))], and its involutive closure .Δ1(q). It follows immediately that  

 

δm+ Ns = dim [Δ1(q)] ≤ dim[.Δ1(q)] ≤ dim(q) 

= 3+ N + Nc+ Ns . 

We define the degree of nonholonomy of the configuration kinematic model as 

 

M = dim[.Δ1(q)]−(δm+δs)  

 

This number represents the number of velocity constraints that are not integrable and therefore 

cannot be eliminated from the configuration evolution description, whatever the choice of the 

generalized coordinates. It must be pointed out that this number depends on the particular structure 

of the robot, and thus it has not necessarily the same value for two robots belonging to the same 

class. On the other hand, for a particular choice of generalized coordinates, the number of 

coordinates that can be eliminated by integration of the constraints is equal to the difference 

between dim(q) and dim(Δ1(q)).  

It can be checked that the configuration kinematic model of all types of wheeled robots (including 

omnimobile robots) is nonholonomic (i. e., the degree of nonholonomy is not equal to zero), but is 

reducible. Moreover, it does not satisfy the strong accessibility rank condition. This property does 

not contradict the irreducibility of the posture kinematic model. The reducibility of the 

configuration model means that there exists at least one smooth function of q(t), involving 

explicitly at least one of the variables βc(t) and ϕ(t), that is constant along the trajectories of the 

system compatible with the full set of kinematic constraints.  

 

3. The posture models are related to the corresponding kinematic models, with the difference that the 

variables are part of the state vector. This implies the existence of a drift term and the fact that the 

input vector fields are constant. The dynamic models inherit the structural properties of the 

corresponding dynamic model. In particular, the posture dynamic model is irreducible and small-

time locally controllable. 

CONCLUSION 

The discussion of mobility and the derivation of the models are based on assumptions concerning the 

contact between the ground and the wheels: it is assumed that pure rolling and nonslip conditions are 

satisfied for each wheel. These conditions lead to the kinematic constraints that constitute the basis of 

the analysis, and particularly of the properties related to the non-holonomy of these models. All 

model-based control designs therefore also rely on the same assumptions. These assumption are an 

idealization of the physical reality: these kinematic constraints are not satisfied exactly, and the 
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contact effects are characterized by local slipping effects that are related through phenomenological 

laws to the contact forces.  
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