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1. PREAMBLE 

1.1 Introduction 

In computing, floating point describes a method of representing an approximation of a 

real number in a way that can support a wide range of values. Low power consumption 

and smaller area are some of the most important criteria for the fabrication of DSP 

systems and high performance systems. Optimizing the speed and area of the multiplier is 

a major design issue. This can be achieved using Wallace and Dadda algorithm of an 

IEEE 754 single precision floating point multiplier. Improvement in speed multiplication 

of Dadda and Wallace multiplier is done using carry look ahead adder. Multiplier based 

on Wallace and dada algorithms provides an area efficient and high speed multiplication. 

The focus of this project is delay comparison of floating point multiplier using Wallace 

tree and Dadda tree algorithms. The Dadda tree multiplier is faster than Wallace tree 

multiplier. Both uses XOR operation for sign bit calculation and bias is used for exponent 

calculation. But mantissa multiplication is calculating separately by using two different 

techniques, those are Wallace and Dadda tree. 

 

Wallace and Dadda tree involves three steps:[1]Generating partial product using 

booth algorithm.[2]Partial products are added using full adder and half adder until it is 

reduced to two rows.[3]Final two rows are added using carry look ahead adder. Dadda 

tree multiplier uses less number of half adders and full adders compare to Wallace tree 

multiplier. Floating point multiplier is one of the key hardware blocks in digital and high 

performance systems like digital signal processors and microprocessors. There are two 

types of floating point multipliers: single precision floating point multiplier (32-bit) and 

double precision floating point multiplier (64-bit).  

 

Now a day’s speech, video and other such real time applications are required for 

mobile systems. For example cell phone and laptop. Improving multipliers design directly 

benefits the high performance embedded processors used in consumer and industrial 

electronic products. The floating point multiplier should be implemented to present both 

fast multiplication and less hardware. Higher processor has been broadly used in 

computer. In DSP applications, multiplication is one of the most utilized arithmetic 

operations as part of filters, convolves and transforms processors. Both single precision 

floating point multiplier with Wallace tree and Dadda tree algorithms are designed using 

Verilog HDL code.     

 

1.2     Problem Statement 
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It is required to implement single precision floating point multiplier using Wallace and 

Dadda tree algorithms. Delay comparison between both techniques. 

1.3 Objective  

The main objective of this study is to achieve high speed single precision multiplication 

using booth algorithm in Wallace and Dadda tree. This is achieved using verilog HDL 

code. The generated partial products are added using full adders and half adders. For final 

two rows addition carry look ahead adder is used to calculate product of two floating 

point numbers.  

1.4    Scope of the project 

The aim here is to design and implement single precision floating point multiplier using 

Wallace and Dadda tree algorithm on Virtex 5. To generate partial product booth 

algorithm is used because it generates 9 partial products for 23-bit input data. Without 

booth algorithm 23 partial products are generated. Dadda tree uses partition method to 

reduce calculations. It is basic mathematical operation block in digital signal processor. 

1.5   Motivation 

Array multipliers, parallel multipliers and conventional Wallace multipliers are simple 

but very slow and require more area. These techniques require more number of full adders 

and half adders. The Wallace and Dadda tree multipliers using booth algorithm generates 

less partial products. So it requires less designing steps. It uses less number of full adders 

and half adders compare to other multipliers. All the available design uses carry save 

adders or ripple carry adders for design of floating point multiplier. Carry look ahead 

adder is one of the fastest adder and having more advantages among all the available 

adders. So our aim is to design and implement floating point multiplier using Wallace and 

Dadda algorithm with carry look ahead adder. 

1.6    Tools used for simulation 

Xilinx ISE 14.2 design suite is used to implement floating point multiplier using Wallace 

and Dadda algorithm in verilog HDL 

2. LITERATURE SURVEY 

 Multiplication involves two basic operations: the generation of partial products 

and their accumulation. There are two ways to speed up the multiplication:  

[i] Reduce the partial product. [ii] Speed up their accumulation. The complexity is 

reduced by using less number of partial products. It speeds up to accumulate the partial 

products. Multipliers are key component of FIR filters, digital signal processors, 

microprocessors etc. A digital system’s performance is determined by performance of 

multiplier because multiplier is slowest and area consuming element in the system. Hence 

optimizing the speed and area of the multiplier is a major design issue. Area and speed 

are usually conflicting constraints so that improving speed results mostly in larger areas. 

Radix 2^n multipliers which operate on digits in parallel design instead of bits bring the 

pipelining to the digit level and avoid most of the above problems. It was introduced by 

M.K.Ibrahim in 1993. These structures are iterative and modular. The pipelining done at 

the digit level brings the benefit of speed of operation irrespective of multiplier size.       

Kodali. R.K, Gundabathula S.K.& Bappana. L investigated the floating point 

arithmetic, i.e. multiplication. In general the IEEE-754 single precision multiplier requires 
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a 23*23 mantissa multiplication and double precision floating point multiplier requires a 

52*52 mantissa multiplication to obtain final result. Ramesh, A.P.Tilak and Prasad.A.M 

researched on a high speed floating point double precision multiplier is implemented on a 

virtex-6 FPGA. In addition the proposed design is complaint with IEEE-754 format and 

handles overflow, underflow, rounding and various exception conditions. Authors 

discussed design trade-offs of various multiplier implementations. M.Anb uselvi in paper 

entitled ”Design and analysis of floating point and Galois field multipliers using wave-

pipelining” presents a design and analysis of floating point and Galois field multipliers 

using a pipelined technique called “wave pipelining”. Pipelining technique improves the 

throughput of a logic circuit while avoiding some of the overheads of traditional 

pipelining. Galois field theory deals with binary numbers, has the properties of 

mathematical field and is finite in scope. Galois field multipliers used in coding theory 

and cryptography. Anna Jain in paper entitled “FPGA design of a fast 32-bit floating 

point multiplier unit with single precision IEEE754-2008 standard. This design makes 

multiplier faster by reducing delay caused by the propagation of carry by implementing 

adders having least power delay. The modules are written in Verilog HDL and then 

synthesized and simulated using the XILINX ISE 14.2 targeted on the SPARTAN 3E 

FPGA. 

2.1 Different types of multipliers 

Two types of parallel multipliers were defined in the 1960’s. The first type use a 

rectangular array of identical cells which contains AND gate and addition logic to 

generate and sum the partial product bits. Which was defined by J.C.Majithia and R.Kitai 

in 1964.This type of multiplier is called array multiplier. Its delay is proportional to 

multiplier input word size. It is easier to implement. The second type of parallel 

multipliers is column compression multipliers, uses counters or compressors to reduce the 

matrix of partial product to two words. The delay of this is faster than array multiplier, i.e. 

proportional to logarithm of the multiplier word length. 

Array multiplier: It is an efficient layout of a combinational multiplier. With its 

good structure, this multiplier is based on the standard add and shift operations. Each 

partial product is generated by taking into account the multiplicand and one bit of 

multiplier each time. The addition is carried out by high speed carry-save algorithm and 

final product is obtained by any fast adder. 

Conclusion: Array multiplier gives more power consumption as well as optimum 

number of components required, but delay for this multiplier is larger. It also requires 

larger number of gates because of which area is also increased; due to this array multiplier 

is less economical. Thus it is a fast multiplier but hardware complexity is high. 

Baugh Wooley Multiplier: Baugh wooley Two’s complement signed multiplier 

is the best algorithm for signed multiplication because it improves the regularity of the 

multiplier and allow all the partial products to have positive sign bits. When multiplying 

two’s complements numbers directly, each of the partial products to be added is a signed 

numbers. Thus each partial product has to be sign extended to the width of the final 

product in order to form a correct sum by the carry save adder. 

Conclusion: According to this multiplier an efficient method of adding extra 

entries to the matrix is suggested to avoid negatively bits in the partial product matrix 

which results in extra circuitry and increase power consumption. 
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Braun Multiplier: It is parallel multiplier that is known as carry save array 

multiplier. It performs multiplication of two unsigned numbers. It consists of array of 

AND gates and adders. 

Conclusion: One of the major disadvantages of Braun’s Multiplier is that the 

number of components increases quadratically with number of bits. So multiplier 

becomes inefficient. It cannot stop the switching activity even if bit coefficient is zero 

that results in more power dissipation. 

Booth multiplier:  In the 1950’s booth algorithm used in array multipliers to 

perform two’s complement multiplication. Which is defined by Andrew D,Booth in 

1951.It groups 2-bits,3-bits,4-bits at a time to reduce partial products. The triplets are 

converted by booth logic into a set of five control signals used by the adder cells in the 

array to control the operations performed by the adder cells. It reduces number of adders. 

Conclusion: The disadvantages of booth multiplier are number of add operations 

and shift operation becomes variable. It becomes inconvenient in designing parallel 

multipliers. The algorithm becomes inefficient when binary value 1varied. 

Conventional Wallace Method: It consists of three steps. In first step partial 

products of two numbers are generated. In second step using column compression 3-bits 

and 2-bits are grouped. Perform full adder and half adder operations until two rows 

remains. In third step remaining two rows are added using fast adder like carry look ahead 

adder.  

Conclusion:  In this method more partial products are generated. So it requires 

more number of adders, hence delay is more. 

2.2 Overview of Wallace multiplier 

It computes a partial product by examining two multiplicand bits at a time. Later 

higher radix booth algorithm was introduced to improve the latency performance of the 

regular booth array multiplier. In 1964 C.S.Wallace introduced a fast multiplication of 

Wallace based on booth algorithm using full adder and half adder. It also consists of three 

steps. In first step partial products of two numbers are generated using radix-8 booth 

algorithm. It generates less number of partial products compare to conventional Wallace 

method. In second step using column compression 3-bits and 2-bits are grouped. Perform 

full adder and half adder operations until two rows remains. In third step remaining two 

rows are added using fast adder like carry look ahead adder. Compare to conventional 

Wallace method booth algorithm with Wallace multiplier uses less number of full adders 

and half adders and Wallace multiplier using booth algorithm is faster. It is 67% faster 

than the existing Wallace multiplier, 22%faster than radix-8 booth multiplier. Modified 

Wallace multiplier has the advantage of reduced complexity because of less number of 

half adders. The gate count in modified Wallace multiplier is less than that of the 

conventional Wallace multiplier. 

2.3 Overview of Dadda multiplier 

Dadda algorithm was invented by Luigi Dadda in 1965 using counter placement 

strategy in the partial product array. It is similar to the Wallace multiplier, but it is slightly 

faster for all operand sizes. It requires less number of logic gates. It consist basic three 

steps. In first step partial products of two numbers are generated using radix-8 booth 

algorithm. It generates less number of partial products compare to conventional Wallace 

method. In second step the partial products are divided in to two parts. In part-0 right 
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most 30 bits are taken for calculations, using full adders and half adders the column 

addition is performed until two rows get. At last these two rows are added using carry 

look ahead adder. In part-1 left most 19-bits are taken for calculations, using column 

compression 3-bits and 2-bits are grouped. Perform full adder and half adder operations 

until two rows remains. At last these two rows are added using carry look ahead adder.  In 

third step part-0 and part-1 results are added using half adders and full adders. Finally we 

get product of two 23-bit numbers. 

Dadda has three steps: 

1. Logical AND each bit from one bit of multiplicand, that gives n2  result. Depending on 

position of the multiplied bits, the wires carry different weights. Example wire of bit 

carrying result of a2b3 is 32. 

2. Reduce the number of partial products to two layers of full adders and half adders. 

Take three wires with same weights and perform full adder. The result will be an output 

wire of the same weight and an output wire with a higher weight for each tree input wires. 

If two wires of same weight left, perform half adder. Otherwise pass them to next layer. If 

only one wire left, connect it to next layer. 

3. Group the wires in two numbers and add them with carry look ahead adder. 
3. FLOATING POINT MULTIPLICATION 

The IEEE (Institute of Electrical and Electronics Engineers) has created a Standard to 

define floating point representation. The IEEE 754 Standard is more used for floating 

point multiplication and is adapted to many hardware and software implementations. 

The standard defines five basic formats depends on their base and the number of bits 

used.  

3.1   IEEE 754 STANDARDS FOR BINARY FLOATING POINT 

MULTIPLICATION: 

There are three binary floating point formats, which can be encoded using 32, 64 or 128 

bits. The first two binary formats are the ‘single precision’ and ‘double precision’ formats 

of IEEE 754-1985 and third is called ‘quad’. 

                                            

 

31         30                            22                                                                                           0 

IEEE (Institute of Electrical & Electronics Engineering.) numbers are stored using 

scientific notation.  

± Mantissa*2exponent 

We can represent single precision floating point numbers with three binary terms: 

1] Sign bit s: 1 bit. 

2] Exponent field E’: 8 bits. 

3] Fraction field f: 23 bits. 

E’=E+127.     0 ≤   E’ ≤   255. 

• The actual exponent E IS IN THE RANGE OF -126 ≤ E≤127 

• The basic aspects of working with floating point numbers are two: 

1. If number is not normalized, it can normalized by shifting the fraction and 

adjusting the exponent. 

(a) Un-normalized value: 

 

SIGN    EXPONENT                                   MANTISSA 

0                10001000                             00101100000000000000000 
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    There is no implicit 1 to the left of the binary point. 

          Value represented=+0.0010110000….*29 

         (b) Normalized value: 

           

 

Value represented=+1.011000000….*26 

The scale factor is in the form of 2i. Shifting the mantissa right by one bit position                

is rewarded by an increase of 1 in exponent. Shifting the mantissa left by one bit                                                     

position is rewarded by a decrease of 1 in exponent. 

2. When computations precede, a number that does not fall in the required range. In       

single precision floating point numbers normalized representation requires an exponent 

less than -126 or greater than +127. In first case underflow has occurred. In second case 

overflow has occurred. Both are arithmetic exceptions. 

3.1.1    Exceptions: 

The IEEE standard defines 5 types of exceptions that occurred when flag bit sets. 

3.1.1.1 Invalid Operation 

All exponent bits values are ‘1’ and all the mantissa bits are equal to ‘0’, then it 

represents infinity. If all exponent bits values are ‘1’ and all the mantissa bits are not 

equal to ‘0’, and then it represents Not a Number (NaN). The result of invalid operation is 

NaN (Not a number). 

3.1.1.2 Division by zero 

If divisor is zero in ordinary arithmetic there is no meaning for this expression. In 

computer language integer division by zero may cause a program to terminate and if 

floating point numbers may cause NaN (Not a number) value. Division by zero results 

infinity and the multiplication of two numbers also results infinity. Therefore to 

differentiate between the two cases, a divide by zero exception was implemented. 

3.1.1.3 Underflow and overflow  

In two cases underflow exception occurs: tininess and loss of accuracy. Tininess is 

detected after or before rounding when a result lies between ±2Emin. Loss of accuracy is 

detected when the result is when a renormalizations loss occurs. The underflow exception 

occurs whenever tininess is detected after rounding and at the same time result is inexact. 

The overflow exception occurs whenever the result exceeds the maximum value. It is not 

occurred when one operand is infinity, because infinity is always exact. 

Overflow/Underflow means that the result’s exponent is too large/small. If 

exponent is 8-bit then range is from 1 to 254 otherwise the value is not a normalized 

value. An overflow occurs when adding two exponents or during normalization. An 

underflow occurs when subtracting the bias to form the intermediate exponent. If 

intermediate exponent <0 then it is an underflow that cannot be compensated, if the 

intermediate exponent =0 then it is an underflow but that may be compensated during 

normalization by adding 1 to it. When an overflow occurs an overflow flag is high and 

the result is ±Infinity. The sign is determined according to the sign of floating point 

multiplier inputs. When an underflow occurs an underflow flag is high and the result is 

±Zero. If E1 and E2 are exponents of two numbers, then total exponent is E=E1+E2-

127.E1 and E2 range is from 1 to 254. Therefore resulting in E values from 1+1-127= -

125 to 254+254-127=381. But for normalized numbers E range is from 1 to 254. 

0                10000101                       01100000000000000000000  
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Special values: The end values 0 and 255 of the excess-127 exponent E’ are used to 

represent special values. When E’=0 and mantissa M=0,the value exact 0 is represented. 

When E’=255 and M=0, the value is infinite. When E’=0 and M≠0, de-normal numbers 

are represented. Their value is ±0.M*2-126. Therefore they are smaller than the smallest 

normal number. When E’=255 and M≠0, the value is called not a number. It is the result 

of performing an invalid operation such as 0/0 or √-1. 

The sign bit is 0 for positive numbers and 1 for negative numbers. The field f 

contains a binary fraction. The actual mantissa of floating point value is (1+f). For 

example if f is 01110111…, the mantissa become 1.01110111…There are many ways to 

write a number in scientific notation, but there is always a unique normalized 

representation, with exactly one non-zero digit to the left of the point. 

0.456*103=4.56*102=45.6*101 

A side effect is that we get a little more precision for given number. There are 24-bits in 

mantissa, but we need to store only 23 of them. The exponent field represents the 

exponent as a biased number. It consist actual component plus 127 for single precision 

floating point numbers. This converts all single precision exponents from -127 to 127 into 

unsigned numbers from 0 to 254. 

Two examples shown below for single precision: 

If exponent is 3, the e-field is 3+127=130=100000102 

If the e-field contains 8’b10000011 (13110) the actual exponent is 131-127=4 

Storing a biased exponent means we can compare IEEE values as if they were signed 

integers. 

3.2 The binary representation of IEEE format for single precision floating point 

number: 

The decimal number is -12.375 that is first convert to binary form. So the value is 

1100.011(2). Normalize the number by shifting the binary point until there is a single 1 to 

the left. Shift binary point to left after 3-bits. i.e. 1100.011*20=1.100011*23 

The exponent is 3. Therefore in biased form it is 130=10000010. 

The fraction is 100011. 

-12.375 

 

 

 

3.3 Floating point conversion to IEEE 754 format: 

Ex1: The decimal number is 147.625 

Step1: Convert decimal number to its equivalent binary fractional form. 

147.625=10010011.101 

Step2: Normalize the binary fractional number. 

10010011.101=1.0010011101*27 

Step3: Convert the exponent to 8-bit excess-127 notation. Add 127 to exponent and 

convert it to 8-bit binary number. 

7+127=134=10000110 

Step4: Convert mantissa to buried bit format. 

1.0010011101 0010011101 

Step5: Write down 1+8+23=32 bit binary number. 

147.625=0 10000110 00100111010000000000000 

    1                     10000010                        10001100000000000000000 



 
Volume 9, Issue 1 - January 2021 - Pages 7-38 

Appaji.H.Birasal, Chetana H Page 14 
 

Ex2: The decimal number is -20.5   

Step1: Convert number to its equivalent binary fractional form.  

20.5=10100.1 

Step2: Normalize the binary fractional number. 

10100.1=1.01001*24 

Step3: Convert the exponent to 8-bit excess-127 notation. Add 127 to exponent and 

convert it to 8-bit binary number. 

4+127=131=10000011 

Step4: Convert mantissa to buried bit format. 

1.01001    01001 

Step5: Write down 1+8+23=32 bit binary number. Sign bit is 1 for negative number. 

-20.5=1 10000011 01001000000000000000000 

3.4 Floating point multiplier block diagram 

 Sign1             Sign2               E1                  E2                        M1                  M2 

                                                         

                                                         +                             

                                                              -   Bias (127) 

 

 

 

 

 

 

Fig3.4: Block diagram of floating point multiplier 

           

The above figure shows block diagram of floating point multiplier. It consist mainly 

five steps: 

Step1: The sign of floating point number n1 and n2 are logically XOR together. 

Sign=Sign1 XOR sign2. If both inputs are 0, then output is 0. If sign1 is 0 and sign2 is 1, 

then output is 1. If sign1 is 1 and sign2 is 0, then output is 1. If both inputs are 1, then 

sign output is 0. 

Step2: IEEE exponents are stored as 8-bit unsigned integers with a bias of 127. Take 

example 1.10101*23 the exponent is 3 added to 127 and sum is 130 (100000102).If binary 

exponent is unsigned; it cannot be negative. The largest possible exponent is 128. It is 

added with 127 and sum is 255. This is largest unsigned value represented by 8-bits.The 

range is from 1.0*2-127 to 1.0*2+128The exponent is calculated by adding both exponent of 

floating point numbers and the result is subtracted from bias (127).   E=E1+E2-127 

Step3: The mantissa is calculated by multiplying both mantissa of floating point numbers. 

M=M1*M2. Multiplication is done using any algorithm. Those are array multiplier, booth 

multiplier, parallel multiplier, conventional Wallace multiplier, Wallace with booth 

multiplier, dadda multiplier etc. Due to large delay of multipliers, different methods have 

been designed to increase speed. The partial products are generated using booth 

algorithm. The partial product bits are added using half adders and full adders until two 

rows get, at finally these rows are added using fast carry look ahead adder. Dadda 

multiplier algorithm is faster than remaining all types of multipliers. If without booth 

algorithm multiplication is performed then it generates more number of multiplications. It 

                     Product of two floating point numbers 

                      Normalize 

+ 

 

*  

+ 

+ 

  XOR                                                                 
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takes more delay to execute. Multiplication is a basic and important building block in all 

arithmetic logic units. 

Step4: Normalize the result value if value is un-normalized, so that there is a 1 just before 

the decimal point. Shifting decimal point one place to the left increments the exponent by 

1, Moving one place to right decrement the exponent by 1. For example, decimal number 

is 4566.23 is normalized as 4.56623*103. Same way the floating point binary value 

1100.100 is normalized as 1.100100*23   by moving the decimal point 3 positions to the 

left and multiplying by 23.In a normalized mantissa, the digit 1 always appears to the left 

of the decimal point. The leading 1 is lost from the mantissa in the IEEE storage format 

because it is redundant. Sign, exponent and normalized mantissa are grouped into the 

binary IEEE representation. 

The advantages of normalizing floating point numbers are: 

1) The version is exceptional; there is one option to write a real number in such a format. 

2) It is easy to compare two normalized numbers, check the sign, exponent and mantissa. 

3) In a normalized format, a fixed size mantissa is using all the digit cells to store   

required digits. 

4) The IEEE format normalization representation always begins with a 1-bit. This bit can 

be omitted and it is replaced by data. The omitted bit is also known as hidden bit. 

Step5: If mantissa bits are more than 5-bits rounding is required. If we applied the 

truncation rounding method then the mantissa is 5-bits.At finally product of two floating 

point numbers is getting using IEEE standard.   

3.5 Floating point multiplication algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig3.5a: Flowchart of floating point multiplier 

The following algorithm is used to multiply two floating point numbers: 

1. Multiplication (1.M1*1.M2): Its response is multiplying the unsigned significant 

and putting the decimal point in the multiplication product. Multiplication is 

performed on 23-bits. Operands x and y are used for multiplication. The floating 

point number x consist of sign bit s_ x, exponent bits e_ x and mantissa bits m_ x. 

The floating point number y consists of sign bit s_ y, e_ y and mantissa bits m_ y. 

2. Putting the decimal point in the product. 

3. Adding the exponents (e_ out=e_ x + e_ y –127): Its response is to add two 

floating point number exponents and sum is subtracted from bias 127. An 8-bit 

OPERAND X= {s _x, e _x, m _x} 
OPERAND Y= {s _y, e _y, m _y} 

Rounding & normalization 

M _out=m _x*m _y 

S _out=s _x + s _y 

 

e _out=e _x + e _y -127 

Product= {s _out, e _out, m _out} 
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carry look ahead adder is used to add two input exponents. This adder uses 

generate and propagate functions. Gi is referred as the carry generate signal. So 

carry C i+1 is generated whenever Gi =1. Pi is referred as the carry propagate 

signal. When Pi =1, the input carry is propagated to the output carry. C i+1=Ci. 

Computing the values of P and G depends on input bits. 

 a8             b8              a2            b2                 a1           b1                     a0          b0 

 

                 C8....                             C2                             C1                              C0 

 

             S8                          s2                               s1                                s0 

P8 G8                        P2 G2                         P1 G1                             P0 G0 

C9 

 

 

Fig3.5b: Block diagram of carry look ahead adder 

 

 Full adders are used to calculate sum, propagate and generate bits. The ai, bi  

 and ci are input bits. Si and Ci+1 are output bits.  

  Pi= ai+ bi                    Gi= ai . bi 

  Si= ai xor bi xor ci  

  Ci+1=Gi + Pi.ci 

  Carry look ahead adder is faster because it generates carry bits parallel by an additional   

logic circuit when inputs change. It uses carry bypass logic ti speed up the carry 

propagation. 

4. Obtaining sign by performing the operation s1 XOR s2.  

 i.e. s_ out=s_ x XOR s_ y. Multiplying one negative number and one positive number       

results negative number product. If both numbers are positive or negative then product is 

positive number. According to logical XOR truth table multiplication is performed. When 

both inputs are 0 or 1, the output is 0. When any one of the input is 0 or 1, the output is 1. 

5. Normalizing the result: The result of the significant multiplication is normalized to 

have a leading 1 to the left of the decimal point. If product is 1010.0000100(2) then its 

normalized value is 1.0100000100(2). 

6. Rounding the result to fit in the 32-bits. 

3.5.1   Floating point numbers multiplication examples: 

Ex1:  12.52 * 15.25=190.93 

          12.52                1100.10000101 

          15.25                1111.01000000 

          Normalized value of first number is 1.10010000101*103                     10010000101 

         Normalized value of second number is 1.11101000000*103              11101000000 

         Exp1=3+127=130=10000010 

         IEEE format of first number is: 

         0-10000010-10010000101000000000000 

         Exp2=3+127=130=10000010 

         IEEE format of second number is: 

         0-10000010-11101000000000000000000 

         Exp=Exp1+Exp2-127 

FULL ADDER FULL ADDER FULL ADDER FULL ADDER 

                        CARRY LOOK AHEAD LOGIC 
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                =130+130-127 

         Exp=133 

         Mantissa multiplication: 

                                                                   1.10010000101 

                                                                   1.11101000000 

                                          -------------------------------------------------------------- 

                                                                   000000000000 

                                                                 000000000000 

                                                               000000000000  

                                                             000000000000 

                                                           000000000000 

                                                         000000000000 

                                                       110010000101 

                                                     000000000000 

                                                   110010000101 

                                                 110010000101 

                                               110010000101 

                                             110010000101 

                                 --------------------------------------------------------------------                                           

                                      10.1111101110110001000000 

The normalized value of product is 1.01111101110110001000000 × 101 

Total exp =product_ exp + exp -127 

               =1+133-127 

Total exp =7 

The product of mantissa of two numbers is 1.01111101110110001000000. 

Shift decimal point to right after 7 bits. So the product is     

10111110.1110110001000000(2) =190.93(10) 

      Normalized form of product is  

1.01111101110110001000000*107                          01111101110110001000000 

Exp=7+127=134=10000110 

Sign of product is 0. 

     IEEE form of product is:     0-10000110-01111101110110001000000 

Ex2: 16.25 *(-23.75) = (-385.9375) 

        16.25                 10000.01 

        23.75                  10111.11 

   Normalized value of first number is 1.000001*104                                000001 

   Normalized value of second number is 1.011111*104                         011111 

   Exp1=4+127=131=10000011 

   IEEE format of first number is: 

   0-10000011-00000100000000000000000 

   Exp2=4+127=131=10000011 

   IEEE format of second number is: 

   0-10000011-01111100000000000000000 

   Exp=Exp1+Exp2-127 

         =131+131-127 

   Exp=135 
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Mantissa multiplication:                                         

                                                                   1.000001 

                                                                   1.011111 

                                          -------------------------------------------------------------- 

                                                                    1000001 

                                                                  1000001 

                                                                1000001  

                                                              1000001 

                                                            1000001  

                                                          0000000 

                                                        1000001 

                                        --------------------------------------------------------------------                                           

                                                 11. 00000011111 

The normalized value of product is1.100000011111*101 

     Total exp =product_ exp + exp -127 

               =1+135-127=9. 

The product of mantissa of two numbers is 1.100000011111. 

Shift decimal point to right after 9 bits. So the product is  

1100000011.111(2) = -385.9375(10). 

Normalized form of product is 1.100000011111*109                      100000011111 

Exp=9+127=136=10001000 

Sign bit is 1. 

IEEE format of product is: 

1-10001000-10000001111100000000000 

Ex3: 6.5 * 2.5 = 16.25 

        6.5                      0110.10 

        2.5                      0010.10 

   Normalized value of first number is 1.1010*102                              1010 

   Normalized value of second number is 1.010*101                          0101 

   Exp1=2+127=129=10000001 

   Exp2=1+127=128=10000000 

   IEEE format of first number is: 

   0-10000001-10100000000000000000000 

   IEEE format of second number is: 

   0-10000000-01000000000000000000000 

        Exp=Exp1+Exp2-127 

         =129+128-127 =130 

        Mantissa multiplication:                                         

                                                                   1.1010 

                                                                   1.0100 

                                          -------------------------------------------------------------- 

                                                                    00000 

                                                                  00000 

                                                                11010  
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                                                              00000 

                                                            11010  

                                         --------------------------------------------------------------------                                           

                                                     10.00001000 

The normalized value of product is1.000001000*101 

Total exp =product_ exp + exp -127 

               =1+130-127 

Total exp =4 

The product of mantissa of two numbers is 1.000001000. 

Shift decimal point to right after 4 bits. So the product is  

10000.01000(2) = 16.25(10). 

Normalized form of product is 1.000001*104                            000001 

Exp=4+127=131=10000011 

Sign bit is 0. 

IEEE format of product is:   0-10000011-00000100000000000000000 

4. BOOTH3 ALGORITHM 

The 16-bit booth 3 multiplication concept is also used for 23-bit booth 3 multiplication. 

Multiplier and multiplicand both are 23-bits. The multiplier is divided into 8 groups. Each 

group contains 4-bits binary value as shown in figure 4.1a. 

4.1 Multiplication of two binary numbers using booth 3 algorithm 

 
 

Fig4.1a: 16-bit booth 3 multiplication 

In each group multiplier 4th bit is checked and if it is 0 then sign bit is S. If it is 1 then 

sign bit is ~S. The partial products reduced from 23 to 9 by using boot 3 algorithms. The 

partial product selection table is shown in figure. Each partial product is chosen from the 
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set 0, ±M, ±2M, ±3M, ±4M. Except 3M all multiples are obtained from shifting and 

complementing of the multiplicand.  

 

The following steps are used to perform booth3 algorithm: 

1) The multiplication of two 23-bits binary numbers using Booth algorithm implies 

reduction in number of digits to 8 as shown below figure 4.1b..               

            D6                        D4                      D2                      D0            

 

  D7                      D5                       D3                        D1 

                                 

Fig4.1b: multiplier recoding 

 

 

2) The partial products multiplexer selects one operation out of nine possible operations 

depending on value of the corresponding signed bit as shown in figure4.1c. 

 

                                             M 

                                           ~M 

                                            2M 

                                          ~2M To Wallace tree or 

                                            3M       dadda tree 

                                          ~3M 

                                            4M 

                                          ~4M 

 

 

 

 

 

 

 

Fig4.1c: Partial product multiplexer 

3) The partial product multiplexer selects M if multiplier 4-bits binary value is 0001 and 

~M is selected when binary value of multiplier is 1101. The multiplexer selects 2M when 

binary value of multiplier is 0011. The multiplexer selects ~2M when binary value of 

multiplier is 1011. The partial product multiplexer selects 3M when binary value of 

multiplier is 0101.  

For ex. The operation of 3M is: 

 

y23     y22      y21   …. y3     y2     y1     y0       0            2y   

           y23    y23      y22   …. y4     y3     y2     y1      y0             y 

  -------------------------------------------------------------------------------- 

  z25   z24     z23      z22   …. z4      z3     z2      z1     z0            3y

 

 

MUX 
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4.2   Logic diagram of booth3 partial product generator 

 

 
Fig4.2: 16-bit booth 3 partial product generator logic circuit 

The above logic diagram shows booth 3 algorithm. This modified booth algorithm is 

most used method to generate partial product. This algorithm generates less partial 

products compare to other techniques by using reduction method. Therefore compression 

speed is enhanced. 2-bit, 3-bit, 4-bit recoding is used for this algorithm. The 4-bit 

recoding means that the multiplier B is divided into groups of four bits and the algorithm 

is applied to this group. The booth algorithm is implemented into two steps: 

1) Booth decoding 

2) Booth selecting 

        The booth encoding is used to produce one of the four values in the multiplier group. 

The booth selecting circuit is used to produce a partial product bit k. This algorithm 

reduces partial products by a factor of 2, without adding before to produce the partial 

products.fig shows the dot diagram for a 23 *23 multiplication. The multiplier is divided 

into overlapping groups of 4 bits and each group is decoded to select a single partial 

product as per the selection table. Each partial product is shifted 3 bit positions with 

respect to its neighbors. The numbers of partial products are reduced from 23 to 9. In 
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general there is (n+2)/2 partial products, where n is the operand length. Many required 

multiples are obtained by a simple shift of the multiplicand. Negative multiples taken in 

two’s complement form, which is obtained using a bit by bit complement of the 

corresponding positive multiples, with a 1 added at the least significant bit of partial 

product. Booth algorithm also reduces dots in dot diagram. In this partial product groups 

are assigned to a set 0,M,2M,3M,4M,-0,-M,-2M,-3M,-4M.  

             M is multiplicand value. –M is complement of multiplicand value. 2M is circular 

left shift by 1-bit position. -2M is circular left shift of complement of multiplicand 1-bit 

position. 3M is (a+2a), that means ‘a ‘refers multiplicand and 2a is circular shift of a. -3M 

is complement of (a+2a) value. 4M is circular shift of multiplicand by 2-bit position. -4M 

is complement of 4M value. The number of dots, constants and sign are added is 126 for 

23*23 multiplier and height of partial product is now 9.  

            Generation of the multiple 3M requires adder circuit. It cannot be obtained by 

simple shifting or complementing of multiplicand. This increases the complexity of the 

partial product generation. The amount of hardware and delay depends upon number of 

partial products to be added. Booth algorithm generates less partial products, so hardware 

cost is less and it improves performance of multiplier. Booth is used in multiplier with 

long operands i.e. greater than 16-bits. Booth 2 is fastest algorithm, booth 3 is power 

efficient and booth 4 requires less area. In booth 3 algorithm starting 27 bits are dots and 

28th, 29th and 30th bits are sign bits, which are S. 31th bit is complement of sign bit, that is 

~S. If MP [3] is 0, then sign is 0. So it represents S. If MP [3] is 1, then sign is 1. So it 

represents ~S. 

5. PROPOSED ALGORITHMS 

5.1    Floating point multiplication using Wallace algorithm 

        In 1964 C.S.Wallace introduced a Wallace tree multiplication algorithm. It includes 

three steps to multiply two numbers. 

Step 1: The partial products are generated using booth 3 algorithm. Nine partial products 

are generated. Two 23-bit numbers are used as inputs, those are multiplicand and 

multiplier. The multiplier input is divided into 8 groups. Each group consists of 4-bit 

binary value. If 0001 in the group then multiplicand value should write as it is. If 0011 in 

the group then 2* multiplicand value should write. Similarly ±3multiplicand and 

±4multiplicand are represented for other binary numbers shown in multiplication using 

booth3 algorithm table. 

Step 2: In first stage the nine partial products are divided into 3 levels. In level-1 the full 

adder (3:2 counter) and half adders (2:2 counter) are used for 3-bits and 2-bits 

respectively. The full adder and half adder results sum and carry bits are stored in 2nd 

stage, level-1. In level-1 also same full adder and half adders are used, these outputs sum 

and carry are stored in further level. This continues in same way until two rows get.  

Step3: These two rows are added using carry look ahead adder. It is faster adder so the 

delay of multiplication is less. Overall the multiplication consist 5 stages.Stage-1 consist 

of 3 levels. Stage-2 consists of 2 levels. Stage-3 consists of 1 level. Stage-4 consist of 1 

level and finally stage-5 also consist of 1 level i.e. using CLA the addition is performed. 

Two CLA’s are used to perform addition and to get product output. At finally we get 

product of two numbers. Single precision 32-bit floating point multiplication of two 
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numbers consists of 1-bit sign, 8-bits exponent and 23-bits mantissa. The 23-bit two 

floating point numbers mantissa are multiplied using above Wallace technique. The sign 

bit of first number and sign bit of second numbers are XOR to get sign bit multiplication. 

When both are 0 or 1, the output is 0. When any one output is 0 or 1, the output is 1. 

Exponent is calculated using propagate and generate function. Using carry look ahead 

adder the 8-bits of exponent are added. The difference between Wallace tree multiplier 

and column compression multiplier is that, in Wallace tree each possible bit in each 

column is covered by 3:2 counter and 2:2 counter, until finally the partial product has two 

rows. This algorithm consists of 5 stages. 

 

Fig5.1: Dot diagram of 23-bit Wallace multiplier. 
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Stage-1: It consists of 3 levels as shown in figure5.1. The level-1 of stage-1 performs 36 

full adders’ functions. MP [0] is 0th bit of multiplier. It is always 0, because when 

grouping the multiplier which contains 4 bits in each group we should add 1 zero to 

multiplier. If MP [3] is 0, the sign  

bit is 0 and it is represented as S. If MP [3] is 1, the sign bit is 1 and it is represented as 

~S. Nine partial products are produced using booth algorithm. These partial products are 

divided in to 3 levels. The level-2 consists of 39 full adders and level-3 consists of 35 full 

adders. The sum and carry outputs of level-1 of stage-1 are stored in level-1 of stage-2. 

Stage-2: Level-1 consists of 6 half adders and 30 full adders. Level-2 of stage-1 sum and 

carry output bits are stored in this stage-2.This continues until two rows get. The level-2 

consists of 5 half adders and 30 full adders. 

Stage3: It consists of 12 half adders and 31 full adders. Two dots are used for half adder 

operation and three dots are used for full adder operation. 

Stage4: It consists of 18 half adders and 30 full adders. 

Stage5: Two CLA’S are used to add last two rows of Wallace algorithm.CLA1 add sum 

bits from S226 to S248 with carry bits from C225 to C247. CLA2 add sum bits from 

S249 to S271 with carry bits from C248 to C270. Two half adders are used at beginning 

and end of stage-5. At finally we get product of two binary numbers. Product is assigned 

from S0, S110, S181, S224, and S272 to S321. 

Totally Wallace multiplier uses: 

1)  Full adders=231.                 

2) Half adders=43.                 

3) CLA=2.       

Wallace multiplier require more number of full adders, half adders compare to Dadda 

multiplier. So Wallace is more complex to design but Dadda multiplier is easy to design 

the single precision floating point multiplier. Wallace multiplier requires more wires 

compare to Dadda multiplier. Carry look ahead adders are used to improve the speed of 

the design. These are faster adders compare to all other adders because they uses carry 

generate and propagate functions. The dot diagram of Wallace multiplier is explained 

above clearly. Stage levels are reduced as stage number increase. Final stage is carry look 

ahead adder, from that result product of two numbers will get. 

5.2 Floating point multiplication using Dadda algorithm 

         Dadda multiplier developed Wallace’s multiplier by defining a few counters in 

partial product reduction stage using carry look ahead adder. Dadda uses many ways to 

compress the partial product bits using 3:2 and 2:2 counters. Fig shows the process of 

23*23 bits dot diagram for dadda multiplier. Each dot represents a bit. In first step 

columns having more than six dots are reduced to 6 dots, next reduced to 4 dots, next 

reduced to 3 dots and at final dots are reduced to 2 dots in a column. These two rows are 

added using carry look ahead adder. Each half adder uses two dots, outputs one in the 

same column and one in the next more significant column and each full adder uses three 

dots, outputs one in same column and one in the next more significant column so that no 

column in step 1 will have more than 6 dots. 

          In each case the rightmost dot of the pair that is connected by a line is in the 

column from which the inputs were taken from the adder. In next step reduction is no 

more than 4 dots per column, further no more than three dots per column, at last no more 

than two dots per column is performed. The height of the matrices is obtained by 
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functioning back from the final two row matrix and restricting the height of the each 

matrix to the largest integer that is no more than 1.5 times the height of its successor. 

Each matrix is produced from its predecessor in one adder delay. Since the number of bits 

in the words to be multiplied, the delay of the matrix reduction process that reduces is 

proportional to log n, where n is word size. Final two row matrix can be implemented as a 

carry look ahead adder and total delay for this multiplier is proportional to the logarithm 

of the word size n.   

5.2.1   Partitioning the partial products: 

           Partial products are divided into two parts: part-o and part-1. In which part-0 and 

part-1 consists of n columns. The two parts are separately performed and finally added 

both result together. The partial products of each part are reduced to two rows by the 

using 3:2 counter and 2:2 counters by referring dadda algorithm. The grouping of 3 dots 

and 2 dots in same column refers to 3:2 and 2:2 counters respectively. S and C denote 

partial sum and partial carry bits. 

Part-0: (Stage-1):In stage-1 nine partial products are divided into 3 levels as shown in 

figure5.2.1a. The partial products are generated using booth 3 algorithm. MP [0] is 

always 0 because when grouping the multiplier bit 0 is replaced with zero. Ex: Multiplier 

is 10010110110100010 

 

 
Fig5.2.1a: Dot diagram of 23-bit Dadda multiplier. 
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By using logic diagram the 9 partial product generation equation is wrote: 

 

0    1    0    0    1    0    1    1    0    1    1    0    1    0    0    0    1    0    0 

  

                                                                                        Extra bit 0 {MP [0]} 

 

Using FOR loop partial products are generated. In each group if MP [3] is 0, then sign bit 

is 0 and it is noted to S. If MP [3] is 1, then sign bit is 1 and it bits noted as ~S. That 

means complement of S is calculated. In level-1 one half adder functions is performed 

and 15 full adders are performed. In level-2 one half adder and 12 full adders are used. In 

level-3 one half adder and 10 full adders are used.  

 

Stage-2: S0, S1……..S15 bits are stored in level-1 of stage-2. The generated carry output 

bits are written in next column by one bit shift. The c0 is carried to next column where it 

is to be added up with sum s1 of a 3:2 counter. The carry c1 of 3:2 counter is added to 

next column. Stage-2 full adders and half adders outputs sums and carries are stored in 

next column in level-1 and level-2. The output sums S16 to S28 are added to previous 

sums and carries in level-1. Totally 21 full adders and 1 half adder used in this level. In 

level-2 of stage-2 18 full adders and 1 half adder and another 1 half adder are used to 

perform addition. 

 

Stage-3: It consists 1 half adder and 25 full adders. The addition is used same process. 

 

Stage-4: It consists of 2 half adder and 28 full adders. The bits C62 and C107 are added 

using half adders. The process is continues until two rows to get. 

 

Stage-5: The two CLA’S CLA1 and CLA2 and 5 half adders are used to add the input 

bits.CLA is faster than other adders. It uses carry propagate and generate functions. The 

starting bits addition is performed using half adder. Four half adders are used at 

beginning. Next S109 to S137 and C108 to C136 bits are added using two CLA’S. At last 

using one half adder for C137 and C172 the last sum bit S173 is getting. Also it generates 

carry bit C173.Finally S138 to S173 are result sum bits of part-0 in dadda algorithm. 

C139 to C174 are result carry bits of part-0 in dadda algorithm. 
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Fig5.2.1b: Dot diagram of 23-bit Dadda multiplier. 

Part-1: (Stage-1): 
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The partial products are shifted upward to make a not more than 6 bits in first step as 

shown in figure5.2.1b. The satge-1 consists of two levels. In level-1 half adders are 2 and 

full adders are 6. P4 [38] and P5 [38] bits are added using half adder. The starting bit is 

31st bit. The partial product 31st to 50th bits are considered for calculation. P2 [31], P3 

[31] and P4 [31] bits are added using full adders. In this full adder ‘a’ is treated as P2 

[31], ‘b’ is treated as P3 [31] and ‘Cin’ is treated as P4 [31]. In level-2 4 half adders are 

used. 

Stage-2: It consists of two levels.Level-1 consists of 2 half adders and 12 full adders. The 

sums of level-1 of stage-1 are stored in level-1 of stage-2. In that level next column 

consists of carry bits of level-1 of stage-1. In level-2, 3 half adders and 7 full adders are 

used. The sum and carry output bits of previous stage bits are added using half adders and 

full adders in next stage. 

Stage-3: It consists of 3 half adders and 14 full adders. The partial products P [7] and P[8] 

bits are added together. 

Stage-4: It consists of 2 half adders and 17 full adders. The partial products P [8] and P[9] 

bits are added together in stage-4. 

Stage-5: One CLA is used to perform addition of sum bits from S228 to S245 and carry 

bits from C227 to C244. Another 2 half adders are used at beginning bits and end bits. At 

finally we get part-1 output of dadda multiplier. The result sum bits are from S246 to 

S266 and carry bits are from C247 to C267. At last the product of two binary numbers 

will get by adding part-0 output and part-1 output. From S138 to S169 are directly 

assigned to output and next 1 half adder and 2 full adders are used. At last 18 half adders 

are used to get final product. 

Totally dadda multiplier uses: 

1) Full adders=187.            

2) Half adders=55.           

3) CLA=3.  

 

6.  VERTEX 5 FAMILY OVERVIEW 

Vertex-5 devices are user-programmable gate arrays with various configurable elements 

and embedded cores optimized for high-density and high-performance system designs. 

 

6.1 General Description 

The Vertex-5 family provides the newest most powerful features in the FPGA 

market. Using the second generation Advanced Silicon Modular Block (ASMBL) 

column-based architecture, the Vertex-5 family contains five distinct platforms, the most 

choice offered by any FPGA family. Each platform contains a different ratio of features 

to adders the needs of a wide variety of advanced logic designs. In addition to the most 

advanced, high-performance logic fabric, Vertex-5 FPGAs contain many hard-ip system 

level blocks, including powerful 36kbit block RAM/FIFOs, second generation 25×18 

DSP slices, select IO technology with built-in digitally controlled impedance, chip sync 

source-synchronous interface blocks, system monitor functionality, enhanced clock 

management tiles with integrated Digital Clock Managers(DCM) and Phase Locked 

Loop(PLL) clock generators and advanced configuration options. 

Additional platform dependent features include power-optimized high-speed serial 

transceiver blocks for enhanced serial connectivity, PCI Express compliant integrated 
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Endpoint blocks, tri-mode Ethernet Media Access Controllers(MACs) and high-

performance PowerPC440 microprocessor embedded blocks. These features allow 

advanced logic designers to build the highest levels of performance and functionality into 

their FPGA-based systems. Built on a 65nm state-of-the-art copper process technology, 

Virtex-5 FPGAs are a programmable alternative to custom ASIC technology. 

Most advanced system designs require the programmable strength of FPGAs. 

Virtex-5 FPGAs offer the best solution for addressing the needs of high performance 

logic designers, high-performance DSP designers and high performance embedded 

systems designers with unprecedented logic, DSP, hard/soft microprocessors and 

connectivity capabilities. The Virtex-5 LXT, SXT, TXT AND FXT platforms include 

advanced high-speed serial connectivity and link/transaction layer capability. 

 

6.2 Features 

1. Virtex-5 FPGA slices are organized differently from previous generations. Each 

Virtex-5 FPGA slice contains four LUTs and four flip-flops. 

2. Each DSP48E slice contains a 25×18 multiplier, an adder and an accumulator. 

3. Block RAMs are fundamentally 36kbits in size. Each block can also be used as two 

independent 18kbit blocks. 

4. Each Clock Management Tile (CMT) contains two DCMs and one PLL. 

 

6.3   Virtex-5 FPGA ordering information

 
 

7. SIMULATIONS AND RESULTS 

The single precision floating point multiplier using Wallace algorithm and dadda 

algorithms are designed using Xilinx ISE 14.2 design suit and have been synthesized with 

XC5VLX110T of Virtex-5 as the target device. Proposed algorithm achieves from writing 

Verilog code. The delay of single precision floating point multiplier using Wallace 

algorithm is compared with delay of single precision floating point multiplier using dadda 

algorithm. This chapter mainly discusses the simulation results of floating point multiplier 

using Wallace and dadda algorithm and analysis of performance goals. 

7.1 Exponent multiplication of two floating point numbers: 
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The two numbers are: 16.25 × -23.75 

1) 16.25 =10000.01 =1.000001 × 104 

           exp1=4+127=131=10000011 

2) 23.75 =10111.11 =1.011111 × 104 

exp2=4+127=131=10000011 

Inputs: 

16.15          0   10000011   00000100000000000000000 

23.75          1   10000011   01111100000000000000000 

Sign=sign1 XOR sign2 

       =0 XOR 1 =1 

  

 

exp =exp1+exp2-127 

      =131+131-127  

   

Mantissa M=11.00000011111 = 1.100000011111 

expf =135+1=136 

Final exp is 136-127 = 9 

M = 1100000011.1112 = 385.937510 

          

 

 
Fig7.1: Two floating point number exponent multiplication output 

 

The product exponent is calculated by adding two floating point number exponents and 

addition result is subtracted from bias 127. 

Sign=1 

exp =135=10000111 

Product = 1   10000111   10000001111100000000000 
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exp1=100000112=13110 

exp2=100000112=13110 

exp =exp1+exp2-127 

      =131+131-127=13510=100001112 

The single precision floating point representation consist 8-bit exponent. The exponent 

field represents the exponent as a biased number. It contains the actual exponent plus 127 

for single precision. This converts all single precision exponents from -127 to 127 into 

unsigned numbers from 0 to 254. The resultant exponent is calculated using generate and 

propagate functions in verilog code.  

 

7.2 Generation of partial products using booth3 algorithm:  

 
Fig7.2: Partial products output 

The variables amp and amc are multiplier and multiplicand binary values. Those 

are 23-bits wide. As explained in chapter 4 each partial product is chosen from the set 0, 

±M, ±2M, ±3M, ±4M. Except 3M all multiples are obtained from shifting and 

complementing of the multiplicand. Using partial product generation table for 23-bit 

mantissa nine partial products are generated. 

The partial products are assigned as pp1, pp2, pp3, pp4, pp5, pp6, pp7, pp8, pp9. 

Many intermediate wires and registers are used to calculate partial products. FOR loop is 

used to generate each partial product. To calculate 3M the 2M is added with M. The 

partial product generation equation is written using XOR, AND, OR and NOT basic logic 

gate expressions. Without booth algorithm 23 partial products are generating but using 

booth algorithm only 9 partial products are generating. 
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7.3 Using Wallace algorithm floating point multiplier output: 

    

Fig7.3: The output of floating point multiplier using Wallace algorithm 

The variables ‘a’ and ‘b’ are 32-bit inputs. These two floating point numbers are 

represented in IEEE 754 format. The verilog code is written in structural mode.  

a = 01000001100000100000000000000000 

b = 11000001101111100000000000000000 

These two floating point numbers are multiplied and output product is generated. 

Pro = 110000111100000011111000000000 

Exponent calculation is above explained and sign bit calculation is performed using 

logical XOR function. Floating point multiplication using Wallace algorithm uses more 

number of full adders and half adders compare to dadda algorithm floating point 

multiplication. 

 

7.4 Using Dadda algorithm floating point multiplier output: 
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Fig7.4: The output of floating point multiplier using Dadda algorithm 

 

Dadda algorithm floating point multiplication uses same steps like Wallace 

algorithm but mantissa multiplication is different.Booth3 algorithm generates 9 partial 

products. The same partial product generation code is used for both Wallace and dadda 

algorithms. In dadda algorithm the partial products are divided in to 2 parts.  

Part-0 and part-1 operations are separately performed and finally these results are 

added together to get final product. Dadda algorithm uses less full adders and half adders 

compare to Wallace algorithm. Therefore it is faster than floating point multiplier using 

Wallace algorithm. Mantissa1 and mantissa2 are 23-bit wide. The product is also 

IEEE754format. We can convert that to decimal point number. 

 

7.5 Device Utilization Summary 

Common components such as flip-flops, LUTs, block RAM and multiplexers 

make up the basic logic structures on a Virtex-5. A collection of these basic structures is 

called as slice or Configurable Logic Block (CLB). The numbers of slice registers used 

are 253 and number of slice LUTs are 958 in floating point multiplier using Wallace 

algorithm. Information about map report and device utilization will give whether design 

fits into the device or not. 
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Table7.5a: Design summary of floating point multiplier using Wallace algorithm. 

 

 

Table7.5a and 7.5b shows the slice utilization for floating point multiplication using 

Wallace and Dadda algorithm. As shown in the table, both Wallace and Dadda algorithm 

multiplication use 2% of the slice registers, LUTs, logics and slices. Information about 

map report and device utilization will give whether design fits into the device or not. As 

proposed design uses 2% of the available resources, one can tell that design fits into the 

Virtex-5. 
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Table7.5b: Design summary of floating point multiplier using dadda algorithm. 

7.4.2 Timing Summary 

       The proposed solution processes data at a rate of 8 bytes per cycle at 47.083MHz. 

Clock frequency is used to calculate throughput. Timing summary provides statistics on 

average routing delays and performance versus constraints. 

➢ Timing summary for floating point multiplier using Wallace algorithm: 

           Speed grade:-2 

           Minimum period: 21.239ns 

           Minimum input arrival time before clock: 4.20ns 

           Maximum output required time after clock: 2.826ns 

           Maximum combinational path delay: No path found 

➢ Timing summary for floating point multiplier using Dadda algorithm: 

Speed grade:-2 

Minimum period: 20.797ns 

Minimum input arrival time before clock: 4.200ns 

Maximum output required time after clock: 2.826ns 

Maximum combinational path delay:  No path found 

 

8. ADVANTAGES DISADVANTAGES AND APPLICATIONS: 

8.1 Advantages: 

1.  Floating point multiplier using Wallace and dadda algorithm designs presented here 

are very lean and require less resource when implemented on Virtex-5. 

2. Wallace and dadda multiplier algorithms have less delay. 
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3. The number of logic levels required to perform the summation is reduced in Wallace 

and dadda algorithm compare to other multiplier algorithm techniques. 

4. Wallace and dadda multipliers algorithms are faster because to generate less partial 

products these are adopt booth3 algorithm. It uses smaller area and low power dissipation. 

5. In both Wallace and dadda algorithm carry look ahead adders are used instead of carry 

select adders or ripple carry adders, so carry look ahead adder is one of the fastest adder 

and having more advantages among all the available adders. 

8.2 Disadvantages: 

1. Wallace and dadda algorithms are complex to layout in VLSI design and have irregular 

wires. 

8.3 Applications: 

1. High Speed Signal Processing that includes DSP based applications. 

2. DWT and DCT transforms used for image and wide signal processing. 

3. FIR and IIR Filters for high speed, low power filtering applications. 

4. Multi-rate signal processing applications such as digital down converts and up 

converters 

CONLUSION 

In the proposed work design of floating point multiplier using Wallace and Dadda 

algorithm with carry look ahead adder on FPGA is presented that is used for DSP 

applications. Modified booth3 algorithm is used to design fast multiplier. So floating point 

multiplier using Dadda algorithm with carry look ahead adder is faster than floating point 

multiplier using Wallace algorithm with carry look ahead adder. Inherently parallel design 

of algorithm allows an efficient hardware implementation. Dadda multiplier has smaller 

delay. The simulations and synthesis results of modules are provided. 

IEEE 754 standard based floating point representation has been used. The unit has 

been coded in Verilog and has been synthesized. Carry look ahead adder is used in the 

design of final stage adder of Wallace and dadda tree used for mantissa multiplication and 

in the exponent addition. The dadda multiplier has less number of reduction stages and 

levels compared to other multiplier techniques.  

          Algorithms are designed using Xilinx ISE 14.2 design tool and implemented on 

Virtex-5. Synthesis report shows that proposed design achieves area and performance 

goals.  

Comparison of synthesis report of floating point Wallace & Dadda multipliers using 

carry look ahead adder: 

 Floating point multiplication 

using Wallace algorithm. 

Floating point multiplication 

using Dadda algorithm 

No. of slices 253/12480=2% 253/12480=2% 

No. of LUTs 913/12480=7% 798/12480=6% 

Delay 10.619ns 10.398ns 

Table8.1 Delay comparison of Wallace and Dadda floating point multiplier 

 

FUTURE SCOPE 

The designed floating point unit operates on 32-it operands. It can also design for 

64-bit operands to enhance precision. It can be extended to have more mathematical 

operations like addition, subtraction, division, square root, trigonometric, logarithmic and 

exponential functions. In future implementing higher compressors for Wallace tree and 
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Dadda tree used for mantissa multiplication can further increase the efficiency of the 

floating point multiplier in terms of speed.  

A few researchers have shown that there is a considerable improvement in the 

delay by using higher order 6:2, 7:2, 9:2 compressors for Wallace tree but no paper for 

Dadda tree. Exceptions like overflow, underflow, inexact, division by zero, infinity, NAN 

etc are incorporated in the floating point multiplier. 

                                                         Bibliography  

 

1. Rizwan Mudassir, et al., “Switching Activity Reduction in Low Power Booth 

Multiplier”, IEEE, 2008. 

2. M. 0. Lakshmanan, Alauddin Mohd Ali, "High Performance Parallel Multiplier 

Using Wallace-Booth 

3. Algorithm," IEEE International Conference on Semiconductor Electronics, pp. 

433-436, 2002. 

4. Masataka Matsui and James B. Burr, “A Low-Voltage 32 x 32-Bit Multiplier in 

Dynamic Differential Logic,IEEE”, 1995. 

5. Nishant Bano et. al / VSRD International Journal of Electrical, Electronics & 

Comm. Engg.”Analysis of various 16-bit Booth Multipliers”, Vol. 2 (1), 2012 

6. Robert F. Shaw, “Arithmetic Operations in a Binary Computer,” Review of 

Scientific Instruments, vol. 21, pp. 687-693, 1950.  

7. J. C. Majithia and R. Kitai, “An Iterative Array for Multiplication of Signed 

Binary Numbers,” IEEE Transactions on Electronic Computers, vol. EC-13, pp. 

14-17, 1964.  

8. R. De Mori, “Suggestions for an I.C. Fast Parallel Multiplier,” Electronics Letters, 

vol. 5, pp. 50 -51, 1965.  

9. H. H. Guild, “Fully Iterative Fast Array for Binary Multiplication,” Electronics 

Letters, vol. 38, pp. 843-852, 1968.  

10. A.D.Pezaris, “A 40ns 17-bit by 17-bit Array Multiplier,” IEEE Transactions on 

Computers, vol. C-20, pp. 442-447, 1971.  

11. Edwin de Angel and Earl E. Swartzlander, Jr., “An Ultra Low Power Multiplier,” 

International Conference on Signal Processing Applications and Technology, pp. 

2118-2122, 1995. 

12. S. Shafiulla Basha1, Syed. Jahangir Badashah, “Design and Implementation of 

radix-4 based high speed multiplier for alu’s using minimal partial products” July 

2012.314 Vol. 4, Issue 1, pp. 314-325 

13. P. R. Cappello and K Steiglitz, “A VLSI layout for a pipe-lined Dadda 

multiplier,” ACM Transactions on Computer Systems 1,2(May 1983) ,pp. 157-17 

14. Baugh, Charles R.; Wooley, B.A., "A Two's Complement Parallel Array 

Multiplication Algorithm," Computers, IEEE Transactions on , vol.C-22, no.12, 

pp.1045,1047, Dec. 1973 

15. Wallace, C. S., "A Suggestion for a Fast Multiplier," Electronic Computers, IEEE 

Transactions on , vol.EC-13, no.1, pp.14,17, Feb. 1964 

16. L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34, pp. 

349–356, 1965 



 
Volume 9, Issue 1 - January 2021 - Pages 7-38 

Appaji.H.Birasal, Chetana H Page 38 
 

17. Townsend, W. Swartzlander, E. Abraham, J., "A Comparison of Dadda and 

Wallace Multiplier Delays". SPIE Advanced Signal Processing Algorithms, 

Architectures, and Implementations XIII. 

18. Kogge, Peter M.; Stone, Harold S., "A Parallel Algorithm for the Efficient 

Solution of a General Class of Recurrence Equations," Computers, IEEE 

Transactions on , vol.C-22, no.8, pp.786,793, Aug. 1973 

19. Brent, Richard P.; Kung, H. T., "A Regular Layout for Parallel Adders," 

Computers, IEEE Transactions on , vol.C-31, no.3, pp.260,264, March 1982 

20. Han Tackdon, Carlson, D.A., "Fast area-efficient VLSI adders," Computer 

Arithmetic (ARITH), 1987 IEEE 8th Symposium on, vol., no.,pp.49,56, 18-21 May 

1987 


