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Abstract: The concept of convergence in an nnn-inner product space extends the classical 

understanding of convergence in vector spaces. This study explores the foundational principles 

underlying nnn-inner product spaces and their associated nnn-normed spaces. It delves into the 

properties and structures that distinguish nnn-inner product spaces from traditional inner product 

spaces, emphasizing the unique convergence criteria that arise in these higher-dimensional 

frameworks. By examining the interplay between nnn-inner products and nnn-norms, the paper 

contributes to a deeper understanding of the geometric and analytic characteristics of nnn-inner 

product spaces, paving the way for further research in functional analysis and its applications. 

Keywords: nnn-inner product, nnn-inner product space, nnn-normed product space. 

1.1 Introduction 

The study of convergence in various mathematical structures is a cornerstone of functional 

analysis, providing essential insights into the behavior of sequences and their limits within these 

spaces. In particular, nnn-inner product spaces, an extension of the classical inner product 

spaces, present a rich framework for examining convergence properties in higher-dimensional 

contexts. These spaces generalize the concept of an inner product by considering multiple 

vectors simultaneously, which leads to the development of nnn-norms and corresponding notions 

of convergence. 

In this paper, we focus on two critical types of convergence in nnn-inner product spaces: strong 

convergence and weak convergence. These concepts, well-established in the context of standard 
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inner product spaces, acquire new dimensions of complexity and intrigue when extended to nnn-

inner product spaces. Understanding the relationship between these types of convergence is not 

only mathematically significant but also essential for the broader application of nnn-inner 

product spaces in areas such as functional analysis, quantum mechanics, and other fields where 

higher-order interactions are modeled. 

We begin by defining strong and weak convergence in the context of nnn-inner product spaces. 

Strong convergence, in this setting, refers to the convergence of a sequence in terms of the nnn-

norm induced by the nnn-inner product, while weak convergence pertains to the convergence of 

sequences when evaluated under the nnn-inner product itself. These definitions extend the 

familiar notions from inner product spaces but incorporate the complexities of nnn-dimensional 

interactions. 

One of the central results we establish in this paper is that strong convergence in nnn-inner 

product spaces necessarily implies weak convergence. This result aligns with the classical theory 

in inner product spaces, where strong convergence implies weak convergence due to the 

continuity of the inner product with respect to the norm. However, the reverse implication—

whether weak convergence implies strong convergence—does not generally hold. To 

demonstrate this, we provide a counterexample that clearly illustrates the distinction between 

strong and weak convergence in nnn-inner product spaces. 

To further support our analysis, we invoke an analogue of Parseval’s identity, traditionally used 

in inner product spaces to relate the norm of a vector to the sum of the squares of its coefficients 

in an orthonormal basis. In the context of nnn-inner product spaces, this identity is extended to 

reflect the structure of these spaces, providing a powerful tool for understanding the interplay 

between strong and weak convergence. 

Through this exploration, we aim to deepen the understanding of convergence in nnn-inner 

product spaces and clarify the relationships between these different notions of convergence. Our 

results contribute to the broader mathematical theory of nnn-inner product spaces and open 

avenues for further research into their applications and underlying principles. 

Definitions and Notes 

1.2 Definition of n-Inner Product Space 

Let n be a positive integer and X be a vector space of dimension d ≥ n (where d can be infinite) 

over the field of real numbers R. An n-inner product is a real-valued function 〈∙, ∙ | ∙, ..., ∙〉 
defined on the Cartesian product X × X × ... × X = X^(n+1) that satisfies the following 

conditions: 
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(I1) Positivity and Linear Independence: 

〈x₁, x₁ | x₂, ..., xₙ〉 ≥ 0 for any x₁, x₂, ..., xₙ ∈ X, 

and 

〈x₁, x₁ | x₂, ..., xₙ〉 = 0 if and only if x₁, x₂, ..., xₙ are linearly dependent vectors. 

This condition ensures that the n-inner product is non-negative and reflects the linear 

independence of the vectors involved. 

(I2) Symmetry under Permutation: 

〈x_{i₁}, x_{i₁} | x_{i₂}, ..., x_{in}〉 = 〈x₁, x₁ | x₂, ..., xₙ〉 for every permutation (i₁, i₂, ..., iₙ) of (1, 

2, ..., n). 

This symmetry condition ensures that the n-inner product remains invariant under any 

permutation of its arguments. 

(I3) Symmetry of the First Two Arguments: 

〈x, y | x₂, ..., xₙ〉 = 〈y, x | x₂, ..., xₙ〉 for all x, y, x₂, ..., xₙ ∈ X. 

This property ensures that the n-inner product is symmetric in its first two arguments. 

(I4) Linearity in the First Argument: 

〈αx, y | x₂, ..., xₙ〉 = α〈x, y | x₂, ..., xₙ〉 for all x₂, ..., xₙ ∈ X and α ∈ R. 

This linearity condition ensures that the n-inner product is linear with respect to scalar 

multiplication in its first argument. 

(I5) Additivity in the First Argument: 

〈x + y, z | x₂, ..., xₙ〉 = 〈x, z | x₂, ..., xₙ〉 + 〈y, z | x₂, ..., xₙ〉 for all x, y, z, x₂, ..., xₙ ∈ X. 

This additivity property ensures that the n-inner product is additive in its first argument. 

A function 〈∙, ∙ | ∙, ..., ∙〉 that satisfies these conditions is called an n-inner product on X, and the 

corresponding pair (X, 〈∙, ∙ | ∙, ..., ∙〉) is referred to as an n-inner product space. 

1.3 Strong Convergence in n-Inner Product Space 

Let (X, 〈∙, ∙ | ∙, ..., ∙〉) be an n-inner product space, and let ‖∙,...,∙‖ be the induced n-norm. A 

sequence (xₖ) in X is said to converge strongly to a point x ∈ X if 

‖xₖ - x, x₂, ..., xₙ‖ → 0 for every x₂, ..., xₙ ∈ X. 

In such a case, we write xₖ → x. This definition extends the classical notion of strong 

convergence in normed spaces to the context of n-inner product spaces, where convergence is 

determined by the n-norm induced by the n-inner product. 
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1.4 Weak Convergence in n-Inner Product Space 

A sequence (xₖ) in X is said to converge weakly to x ∈ X if 

〈xₖ - x, y | x₂, ..., xₙ〉 → 0 for every y, x₂, ..., xₙ ∈ X. 

This definition captures the idea of weak convergence in n-inner product spaces, where 

convergence is determined by the behavior of the sequence under the n-inner product, rather than 

the n-norm. 

Note 1.3: Strong and Weak Convergence of Linear Combinations 

If the sequences (xₖ) and (yₖ) converge strongly or weakly to x and y respectively, then for any α, 

β ∈ R, the sequence (αxₖ + βyₖ) converges strongly or weakly to αx + βy. This note emphasizes 

that both strong and weak convergence are preserved under linear combinations of convergent 

sequences. 

Note 1.5: Continuity of the n-Norm 

If xₖ → x strongly, then 

‖xₖ, x₂, ..., xₙ‖ → ‖x, x₂, ..., xₙ‖ for every x₂, ..., xₙ ∈ X. 

This indicates that the n-norm ‖∙,...,∙‖ is continuous in the first variable. By property (N2) of n-

norms, this continuity extends to each variable, highlighting the smoothness of the n-norm in n-

inner product spaces. 

Note: 1.6 

If 𝑥𝑘 → 𝑥 and 𝑦𝑘 → 𝑦, then by the triangle inequality for real numbers and the Cauchy – 

Schwarz inequality for the 𝑛 – inner product we have |〈𝑥𝑘, 𝑦𝑘|𝑥2, . . . , 𝑥𝑛〉 − 〈𝑥, 𝑦|𝑥2, . . . , 𝑥𝑛〉| ≤
|〈𝑥𝑘 − 𝑥, 𝑦|𝑥2, . . . , 𝑥𝑛〉| 

                         +|〈𝑥𝑘 − 𝑥, 𝑦𝑘 − 𝑦|𝑥2, . . . , 𝑥𝑛〉| + |〈𝑥, 𝑦𝑘 − 𝑦|𝑥2, . . . , 𝑥𝑛〉| 

≤ ‖𝑥𝑘 − 𝑥, 𝑥2, . . . , 𝑥𝑛‖ ∙  ‖𝑦, 𝑥2, . . . , 𝑥𝑛‖ 

                                        +‖𝑥𝑘 − 𝑥, 𝑥2, . . . , 𝑥𝑛‖  ∙ ‖𝑦𝑘 − 𝑦, 𝑥2, . . . , 𝑥𝑛‖ 

                                         +‖𝑥, 𝑥2, . . . , 𝑥𝑛‖ ∙ ‖𝑦𝑘 − 𝑦, 𝑥2, . . . , 𝑥𝑛‖ 

Where 〈𝑥𝑘 , 𝑦𝑘|𝑥2, . . . , 𝑥𝑛〉 → 〈𝑥, 𝑦|𝑥2, . . . , 𝑥𝑛〉. This shows that 〈∙,∙ | ∙ , . . . ,∙〉 is continuous in the 

first two variables. 

Now we come to our main results. The first theorem below tells us that a sequence cannot 

converge weakly to two distinct points.  
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Theorem: 1.7 

        If (𝑥𝑘) converges weakly to x and 𝑥′ simultaneously, then 𝑥 = 𝑥′. 

Proof: 

        By hypothesis and property (15) of 𝑛 – inner products, we have  

 〈𝑥𝑘, 𝑦|𝑥2, . . . , 𝑥𝑛〉 → 〈𝑥, 𝑦|𝑥2, . . . , 𝑥𝑛〉 and at the same time 

 〈𝑥𝑘, 𝑦|𝑥2, . . . , 𝑥𝑛〉 → 〈𝑥′, 𝑦|𝑥2, . . . , 𝑥𝑛〉 for every 𝑦, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋. By the uniqueness of the limit 

of a sequence of real numbers, we must have 〈𝑥, 𝑦|𝑥2, . . . , 𝑥𝑛〉 = 〈𝑥′, 𝑦|𝑥2, . . . , 𝑥𝑛〉 

or 〈𝑥 − 𝑥′, 𝑦|𝑥2, . . . , 𝑥𝑛〉 = 0 

 for every 𝑦, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋. In particular, by taking 𝑦 = 𝑥 − 𝑥′ we obtain ‖𝑥 − 𝑥′, 𝑥2, . . . , 𝑥𝑛‖ =
0 

for every 𝑦, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋.  

By property (N1) of 2 – norms and elementary linear algebra, this can only happens if 𝑥 − 𝑥′ =

0 or 𝑥 = 𝑥′. 

The next proposition says that the strong convergence implies the weak convergence. 

Theorem: 1.8 

            If (𝑥𝑘) converges strongly to 𝑥 then it converges weakly to  𝑥. 

Proof: 

              By the Cauchy – Schwarz inequality, we have  

 |〈𝑥𝑘 − 𝑥, 𝑦|𝑥2, . . . , 𝑥𝑛〉| ≤ ‖𝑥𝑘 − 𝑥, 𝑥2, . . . , 𝑥𝑛‖ ∙  ‖𝑦, 𝑥2, . . . , 𝑥𝑛‖ 

for every 𝑦, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋. Since by hypothesis the right – hand side tends to 0 for every 

𝑦, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋, so does the left – hand side. 

Corollary: 1.9 

A sequence cannot converge strongly to two distinct points. 

The terminology that we use suggests that there are sequences that converge weakly but do not 

converge strongly. Here is one example that invokes an analogue of Parseval’s identity. 

Example: 1.10 



 

 
Volume 10, Issue 6 - June 2022-2023 - Pages 29-36 

 

A. Sony Angeline Rose, T. Devi, R. Mini, G. Golding Sheeba  Page 34 
 

Let (𝑋, 〈∙ ,∙ 〉) be a separable Hilbert space of infinite dimension and (𝑒𝑘), indexed by N, be an 

orthonormal basis for X. Then, for each x and  𝑧 ∈ 𝑋, we have  

∑ 〈𝑥, 𝑒𝑘〉 〈𝑧, 𝑒𝑘〉 = 〈𝑥, 𝑧〉
𝑘

 

In particular, if 𝑥 = 𝑧, then we have Parseval’s identity  

∑ 〈𝑥, 𝑒𝑘〉2
𝑘 =  ‖𝑥‖2 where ‖∙‖ = 〈∙,∙〉1 2⁄  denotes the induced form. 

Now equip X with the standard n – inner product 〈∙ ,∙ | ∙, . . . ,∙〉 as given previously in the 

introduction. Then, for each 𝑥, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑋, we have the following analogue of Parseval’s 

identity 

∑ 〈𝑥, 𝑒𝑘|𝑧2, . . . , 𝑧𝑛〉2

𝑘
=  ‖𝑥, 𝑧2, . . . , 𝑧𝑛‖2‖ 𝑧2, . . . , 𝑧𝑛‖2

𝑛−1
 

Where ‖∙, . . . ,∙‖𝑛−1 denotes the standard (𝑛 –  1) – norm on X. For 𝑛 =  2, the identity can be 

verified easily as follows 

  ∑ 〈𝑥, 𝑒𝑘|𝑧〉2 = ∑ [〈𝑥, 𝑒𝑘〉‖𝑧‖2 − 〈𝑥, 𝑧〉〈𝑧, 𝑒𝑘〉]2
𝑘𝑘  

                        = ∑ [〈𝑥, 𝑒𝑘〉2‖𝑧‖4 − 2〈𝑥, 𝑒𝑘 〉〈𝑧, 𝑒𝑘 〉〈𝑥, 𝑧〉‖𝑧‖2 + 〈𝑥, 𝑧〉2〈𝑧, 𝑒𝑘〉2]𝑘            

                        = ‖𝑥‖2‖𝑧‖4 − 2〈𝑥, 𝑧〉2‖𝑧‖2 + 〈𝑥, 𝑧〉2‖𝑧‖2 

                       = [‖𝑥‖2‖𝑧‖2 − 〈𝑥, 𝑧〉2] ∙ ‖𝑧‖2 

                      =  ‖𝑥, 𝑧‖2‖𝑧‖2 

Because of Parseval’s identity, we must have 〈𝑥, 𝑒𝑘|𝑧2, . . . , 𝑧𝑛〉 → 0 for every 𝑥, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑋, 

that is, (𝑒𝑘) converges weakly to 0. Now, for each 𝑘 ∈ 𝑁 and  𝑧2, . . . , 𝑧𝑛 ∈ 𝑋, denote by 𝑒𝑘
∗ the 

orthogonal projection of 𝑒𝑘 on the subspace spanned by  𝑧2, . . . , 𝑧𝑛. Then ‖𝑒𝑘 − 𝑒𝑘
∗‖ → 1, where  

‖𝑒𝑘, 𝑧2, . . . , 𝑧𝑛‖ = ‖𝑒𝑘 − 𝑒𝑘
∗‖ ∙ ‖ 𝑧2, . . . , 𝑧𝑛‖𝑛−1 →  ‖ 𝑧2, . . . , 𝑧𝑛‖𝑛−1 ≠ 0 

Whenever  𝑧2, . . . , 𝑧𝑛 are linearly independent. This shows that (𝑒𝑘) does not converge strongly 

to 0 in X. 

Special Cases 

               On any 𝑛 – inner product space (𝑋, 〈∙,∙ | ∙ , . . . ,∙〉 ), we can define an inner product 〈∙,∙〉 
with respect to a linearly independent set {𝑎1, . . . , 𝑎𝑛} ⊆ 𝑋 by  
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〈𝑥, 𝑦〉 ≔  ∑ 〈𝑥, 𝑦|𝑎𝑖2
, . . . , 𝑎𝑖𝑛

〉

{𝑖2,...,𝑖𝑛}⊆{1,...,𝑛}

 

And put ‖∙‖ =  〈∙ ,∙〉1 2⁄  as the induced norm. Then, given a sequence (𝑥𝑘) in X, we can also 

define the strong convergence with respect to ‖∙‖ and the weak convergence with respect to 〈∙ ,∙〉. 
These types of convergence are in general weaker than the previous ones, defined with respect to 

‖∙, . . . ,∙‖ and 〈∙,∙ | ∙ , . . . ,∙〉 respectively. 

                      In the standard case, however they are as strong as the previous ones, respectively, 

so that we have the following relation between the four types of convergence: 

Strong convergence w.r.t ‖∙, . . . ,∙‖ ⇒ weal convergence w.r.t 〈∙,∙ | ∙ , . . . ,∙〉 

                    ⇕                                                ⇕ 

 Strong convergence w.r.t ‖∙‖ ⇒ weak convergence w.r.t 〈∙ ,∙〉 

This gives us another explanation why our counter – example in the previous section works. 

Finally, in the finite – dimensional case, any sequence that converges weakly with respect to 〈∙ ,∙〉 

will converge strongly with respect to ‖∙‖, and that any sequence that converges strongly with 

respect to ‖∙‖ will converge strongly with respect to ‖∙, . . . ,∙‖. Therefore, the four types of 

convergence are all equivalent. 

Conclusion 

In this paper, we have explored the concepts of strong and weak convergence within the 

framework of nnn-inner product spaces, a generalization that introduces additional complexity to 

the traditional notions of convergence. Through rigorous analysis, we have established that 

strong convergence in an nnn-inner product space implies weak convergence, aligning with 

classical results in inner product spaces. However, we demonstrated through counter-examples 

that the converse does not hold, highlighting the nuanced differences between these types of 

convergence in higher-dimensional settings. 

The application of an analogue of Parseval’s identity within nnn-inner product spaces provided a 

powerful tool to further illustrate these distinctions. By leveraging properties such as the triangle 

inequality, the Cauchy-Schwarz inequality, and continuity, we have shown the intricate 

relationships that govern convergence in these spaces. Additionally, we proved that a sequence 

cannot converge weakly to two distinct points, reinforcing the uniqueness of weak limits. 

Our findings underscore the importance of understanding the specific conditions under which 

different types of convergence occur, particularly in the context of nnn-inner product spaces, 
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where the interplay between geometry and analysis is more complex. These results have 

potential implications for further studies in functional analysis, quantum mechanics, and other 

fields that utilize advanced mathematical structures to model higher-order interactions. The 

exploration of special cases and the relations between different types of convergence also open 

avenues for future research, particularly in extending these concepts to other generalized spaces 

and their applications. 
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